大電力自己誘起磁場型 MPD スラスタの推進性能及び内部物理現象 に関する実験的研究

Experimental Study on Thruster Performance and Physical Phenomena of High-Power Self-Field MPD Thruster

田内 思担(総研大・院)・大塩 裕哉(龍谷大)・川崎 央(名大)・船木 一幸 (JAXA)

Shitan Tauchi(SOKENDAI), Yuya Oshio(Ryukoku University), Akira Kawasaki(Nagoya University), and Ikkoh Funaki(JAXA)

1. はじめに

近年,火星以遠への深宇宙探査ミッションがいくつか検 討されている.このような深宇宙探査の実現には、コスト の増大につながるミッション期間を短縮可能な推進機の大 推力化、そして高いペイロード比を達成可能な高比推力化 が要求される.

Magnetoplasmadynamic (MPD)スラスタは、高い比推力を 持つと同時に、イオンエンジンやホールスラスタなどの他 の電気推進機と比較して高い推力密度を持つことから、深 宇宙探査におけるメインエンジンとして期待されている.

MPD スラスタは, 電極形状や磁場印加方法によりいくつ かに分類されるが,本研究では自己誘起磁場型 MPD スラ スタ(以下単に MPD スラスタと記す)を取り扱う. MPD スラスタは,第1図のように,通常,陰極と陽極が同軸上 に配置される.推進剤は電極間に流され,電極間のアーク 放電により推進剤を加熱して電離し,陰極周りに生成され る自己誘起磁場と電流により電磁推力を発生するとともに, ジュール加熱によって気体力学的推力を発生する.

将来的な深宇宙探査において、MPD スラスタには、推進 機一機当たりの投入電力 $P \ge 100 \text{ kW}_{e}$ 、推進効率 $\eta \ge 60\%$ 、 比推力 $I_{sp} \ge 4000 \text{ s}$ 、そして寿命 1~3 年間の性能が要求され るが、本研究グループの調査において、60%以上の推進効 率と十分な寿命を両立する設計を示した研究は報告されて いない.従って、放電室内の電磁流体挙動を把握し、推進 性能の向上と電極損耗の低減に資する方策を探索すること は大きな意義を持つ.著者らの研究グループでは、将来の

第1図 MPD スラスタの作動原理

大型有人惑星探査機の主推進機を担うことが可能な,世界 最高出力の100NクラスMPDスラスタシステムについて, その基本的な設計を得ることを目的に研究を行ってきた. 数値シミュレーションと実験とを協働することで,高い推 進性能と熱負荷低減を両立する MPD スラスタの設計指針 を求めようとしている.これまでに,数値シミュレーショ ンによって熱的に妥当であるスラスタサイズスケールでは, 従来提唱されていた設計指針^[1]とは異なり,ノズルのない ストレート形状の陽極の方が高い性能を得られることが示 唆される結果が得られている.^[23]

本研究は、数値シミュレーションにより熱的耐久性を 考慮して設計されたスラスタに対して実験的に推進性能を 取得すると同時に、スラスタ作動時に最も高温となる陰極 を中心とした温度測定を行うことで、熱的耐久性を考慮し たスラスタの臨界性能および作動点を明らかにすることを 目的とした.また、同時にスラスタ内部のプラズマ計測を 行うことで得られた結果についての考察を行う.

2. 実験装置

2.1 MPD スラスタと真空装置 実験には第2図に示す2 つの実験室モデルの MPD スラスタを用いた. このスラス タは数値シミュレーションにより熱構造的に妥当であるよ うに設計されており、リン青銅製の陽極と 2%La₂O₃-W 製 の陰極で構成されている. 陽極のサイズは先行研究[1]に対 して約5倍と大型化することで熱容量を増やし、定常作動 時の熱負荷にも耐えられるとの見積もりで設計されている. 電極間はボロンナイトライド製の絶縁材で絶縁されており, 推進剤はこの絶縁材に取り付けられた4つのポートから高 速電磁弁により供給される.実験は第3図に示すように, 直径2m,長さ3mの真空チャンバーで行った.真空チャ ンバーはロータリーポンプ、メカニカルブースターポンプ で粗引きされ、ターボ分子ポンプとクライオポンプを使用 することで約7×10-5 Paの真空状態にすることができる. また本研究において、実験は準定常作動により行う. そこ で約1msの準定常電流を、キャパシターバンクとパルス成 形回路 (Pulse Forming Network: PFN) を使用してスラスタ

に供給する.

2.2 計測手法 スラスタの推進性能を取得するために, 実験において推力は,第1式のように MPD スラスタ放電 時に取得した振り子式スラストスタンドの力積からコール ドガスに起因する力積を差し引くことで評価した.

$$F_{dis} = \frac{I_{total} - F_{gas}(t_{gas} - t_{dis})}{t_{dis}}$$
(1)

また,2波長における輝度値の比を利用した二色法の原 理を適用した二色温度計を開発し,プラズマ発光下での陰 極温度計測を可能にした.

スラスタ内部のプラズマ計測は、ダブルプローブにより 行なった.プローブは、長さ0.5 mm、直径0.1 mの電極部 がプラズマに対して露出しており、その電極間距離は1.5 mm となっている.プローブは、5本のプローブをスラス タ径方向に設置して、真空チャンバー内に設置された1軸 ステージを使用することで、軸方向に移動できるようにセ ッティングされている.

3. 実験結果および考察

3.1 ストレート形状陽極の優位性および推進性能とプ ラズマとの関係^[4] 我々がこれまでに行なってきた数値シ ミュレーション結果により,臨界電流に近い大電流の条件 では,フレア形状陽極よりもストレート形状陽極を使用し たほうが推進効率の観点で優れていることが示唆された. この傾向は,水素のような分子性ガスを推進剤とする場合, 電磁推力に加えて気体力学的推力を効果的に生成可能なフ レア形状陽極にすべきとされてきたこれまでの先行研究の 結果とは異なるものである.そこでこれまでに得られてい た数値計算結果を基に第2図のような MPD スラスタの実

(a) フレア(FL)形状
(b) ストレート(ST)形状
第2図 MPD スラスタの実験室モデル

験モデルを製作し、実験的にその特性を取得し、数値計算 結果で得られた推進効率の傾向を評価した.実験は水素と アルゴンを推進剤として行ったが、本稿では水素を推進剤 とした場合のみの結果を示す.水素を推進剤とした場合の 代表的な実験結果は参考文献40を参照されたい. 推進効率 と比推力の関係凹からストレート形状陽極の場合、すべて の作動領域でフレア形状陽極よりも推進効率が上回ったこ とがわかる. さらにその傾向は、作動した範囲の中間領域 (この場合は放電電流9kA)で推進効率が極小値を持つと いうものとなった.この理由は、電流電圧・推力の特性[4] および推力スケーリング^[4]から以下のように推察できる. すなわちストレート形状陽極の場合、推力の増加に比して 放電電圧の増加が抑制されたため、結果としてフレア形状 陽極の場合よりも推進効率が向上した. また, 極小値より も低電流の場合では、気体力学的推力が支配的であるため, いわゆるアークジェットのような動作となり、極小値付近 では凍結流損失により推進効率が低下し、極小値より大き い放電電流領域では電磁推力が支配的となり、結果として 推進効率が向上した.ストレート形状陽極の場合に放電電 圧の増加が抑制された理由としては、空間電位分布^[4]から わかるように陽極壁面付近での電位勾配はそれほど大きく なく,等電位線はスラスタ中心軸に対して垂直に形成され たためであると考えられる.一方で、フレア形状陽極の場 合では陽極壁面付近で推力に寄与しない電力の消費が生じ ていると推察されるが、フレア形状陽極でのプラズマ計測 は今後の課題である.このように推進性能とプラズマ分布 とには相関がみられ、特に電極付近のプラズマ挙動が推進 性能へ影響を与えることがわかった. 今後, 電極壁面付近 のプラズマ挙動と推進性能との相関を物理モデルとして定 式化する.

3.4 陰極表面温度分布と推進性能・内部プラズマ流との 関係^[5,6] 陰極はMPD スラスタの寿命律速要因というだけ でなく、推進性能にも影響を与える可能性があるため、陰 極現象の理解は MPD スラスタの高性能化と高寿命化には 不可欠である. そこで本研究では、新たに開発した二色温 度計を使用して陰極の2次元表面温度分布を計測し, 陰極 現象の理解と陰極現象と推進性能との関係を説明すること を試みた.まず本節において主要な成果は, MPD スラスタ の放電下で陰極表面温度部の2次元分布を初めて取得にし た点である.これにより、陰極現象と推進性能、またプラ ズマとの相関を議論することが可能になった.水素を推進 剤とした場合の陰極表面温度分布60から、陰極先端で顕著 に加熱されており、放電電流の増加に従い陰極の高温部は 先端から根元へ拡がっていくことがわかる. この現象から は、放電電流の増加に従い陰極表面からの熱電子放出領域 が拡大していると推察できる、MPD スラスタの理論電磁推 力は第2式のように陽極陰極半径比r_a/r_cに依存する.

$$\frac{F_{th}}{J^2} = \frac{\mu}{4\pi} \left(\ln \frac{r_a}{r_c} + \alpha \right)$$
(2)

従って,低電流の場合では実効的な陽極陰極半径比が大きく,大電流の場合では実効的な陽極陰極半径比は理論値に

近くなると考えられる.これは放電室内部プラズマ計測の 結果からも推察でき,陰極の高温部に対応した箇所に高温 高密度プラズマが形成された.このように,陰極表面温度 分布とプラズマ分布には相関がみられた.文献⁽⁴⁾に示す推 力特性では放電電流の増加に従い推力は理論値に漸近して いく様子が見られるが,これは気体力学的推力に加えて陰 極表面温度分布に起因する現象であると考えられる.今後 は,取得した結果から陰極現象とその周辺プラズマとの相 関を物理モデルとして定式化する.

4. まとめと今後の課題

本研究では、数値シミュレーションにより熱的耐久性を 考慮して設計されたスラスタに対して実験的に推進性能を 取得すると同時に、スラスタ作動時に最も高温となる陰極 を中心とした温度測定を行うことで、熱的耐久性を考慮し たスラスタの臨界性能および作動点を明らかにすることを 目的とした.また、同時にスラスタ内部のプラズマ計測を 行うことで得られた結果についての考察を行なった.この 結果から、推進性能とプラズマとの間には相関があり、特 に推進性能は電極壁面付近の電位分布に影響される可能性 が示唆された.この領域では顕著なイオン加熱が生じてい る可能性があるため、今後はフレア形状陽極のプラズマ計 測に加え、各スラスタ形状におけるイオン温度の求め、ス ラスタ内におけるイオンの挙動を明らかにする.また、陰 極表面温度分布とプラズマとの間にも相関がみられること がわかっている.これらの結果を踏まえ、プラズマと推進 性能、プラズマと陰極現象それぞれの相関に対してモデル 化を試みる.

参考文献

- [1] Funaki, I., et al., AIAA paper, AIAA 2014-3418, 2014.
- [2] Tauchi, S., et al., Trans. JSASS, Aerospace Tech., Vol. 16, No. 3, pp. 274-279, 2018.
- [3] 田内思担,他, *日本航空宇宙学会論文集*, Vol. 67, No. 5, pp.159-166, 2019.
- [4] Tauchi, S., et al., AIAA paper, AIAA 2020-0191, 2020.
- [5] Tauchi, S., et al., AIAA paper, AIAA 2019-1241, 2019.
- [6] Tauchi, S., et al., Proc. IEPC, IEPC-2019-551, 2019.