

## Background (1/4)

Examples of hypervelocity impact experiments on electric power harness of satellites

| Power supply | Projectile<br>material | Projectile<br>diameter (µm) | Impact velocity<br>(km/s) | Result                          |
|--------------|------------------------|-----------------------------|---------------------------|---------------------------------|
| 60V/2A       | AI                     | 600                         | 3.97                      | sustained disruptive discharges |
| 100V/3A      | Glass                  | 500                         | 4.35                      | sustained disruptive discharges |
| 100V/3A      | stainless              | 300                         | 4.01                      | sustained disruptive discharges |





Reference

Before impact

After impact

JERG-2-144-HB001 'JAXA Space Debris Protection Design Manual Appendix 2 ' (published by JAXA, 2008)

61



## Background (4/4)

Technical issues regarding dust particles (meteoroids & space debris) of approx. <u>100</u> <u>micrometers to several millimeters</u> in size

- 1. Depending on the size, impact may damage the wire harness and other equipment
- 2. Space debris flux (number ) for the size range not well known

### Detection principle for new type of active dust sensor (QPS dust sensor)\*



Objective: To measure the dust flux for dust ranging in size from 100 micrometers to several millimeters.

QPS dust sensor\*\*: a thin layer (film) of nonconductive material on which multiple thin, conductive strips with a fine pitch are formed.

A dust particle impact is detected when one or more strips are severed by an impact (perforation) hole.

- \* QPS: Institute for Q-shu Pioneers of Space, Inc.
- \* \* Patent pending

## Study results for FY2008/09

- Prototype models successfully manufactured. Strip line width: 50 µm; Pitch: 100 µm; Material: Aluminum Film thickness: 12.5 & 25 µm; Material: Polyimide (PI)
- Hypervelocity impact experiments conducted on the prototypes Breakup signals detected.

Technical issues remaining from FY2008/09 study:

- Problems concerning design and manufacturing
- Parametric survey not performed.

## **Objectives for FY2009/10 study**

- Improve of stability of sensor performance
- Evaluate sensor performance by hypervelocity impact experiments

## Sensor prototype (FY2008/09)



Sensor film (10 cm x10 cm)



Detection circuit unit

- Stability during sensor performance evaluation
   Loss of film's terminal area progressed with time
- Yield rates for sensor's conductive strips
  Up to 50 %
- Uncertainty regarding data (severed signal) discernment

Caused by use of analog circuit

- Mass of data acquisition circuit
  - Total mass: 470 g (without wire-harness)

#### Summary of improvements for FY2009/10

- Small, fine-pitch connecters are used for terminal area
- The film was divided in accordance with the width of the connecter.
- Cu coating adopted for strip line material
- Digital circuit using MUX adopted for data acquisition circuit

### Improved prototype sensor (FY2009/10)



### Hypervelocity impact experiments on sensor (February 2010)



Two-stage light gas gun (ISAS/JAXA)



**Prototype dust sensor** Vacuum level: <5 Pa Temperature: Room temperature

## **Experimental conditions**

| Environmental conditions |                   | Vacuum level (Pa)           | <5                                 |   |
|--------------------------|-------------------|-----------------------------|------------------------------------|---|
|                          |                   | Temperature                 | Room temperature                   | ~ |
|                          | Impact conditions | Projectile material         | SUS304, Glass                      |   |
|                          |                   | Projectile diameter<br>(µm) | 50 – 516                           |   |
|                          |                   | Impact velocity (km/s)      | 1.9 – 7.0                          |   |
|                          |                   | Impact angle (°)            | 90<br>(vertical to sensor surface) |   |

# Example correspondence between signal and perforation hole





11



### Experimental results - All data -





## Study plan for FY2010/11

### 1. Design & manufacture a BBM model

- 1 unit are: 35 cm x 35 cm
- Space proven manufacturfe methods and parts

### 2. Envirment tests on a BBM model

Thermal-strain tests

### 3. Conduct hypervelocity impact experiments on sensor

Oblique impacts

### 4. Mission planning (case study)

Effective measurements using small satellites

## **Example application on satellite**



## Summary

