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Abstract

In recent years, the use of low energy trajectories using invariant manifolds in many-body problems has been studied.
However, although many studies on transit orbits in two-dimensional space have been made up to now, there are not
many studies on design of transit orbits in three-dimensional space. For this reason, in this paper, we analyze the
properties of transit orbits in a three-dimensional space, describe its design method, and show an application example
to the actual mission in the earth-moon system three-body problem.

3次元トランジット軌道の設計とミッションへの応用
摘要

近年，多体問題における不変多様体を用いた低エネルギー軌道の利用が研究されている．しかし，これまで２次
元空間のトランジット軌道に関する多くの研究が行われてきたが，3次元空間のトランジット軌道の設計に関す
る研究はあまり行われていない．このため，本論文では，３次元空間におけるトランジット軌道の特性を分析し，
その設計方法を説明する．さらに，地球-月系の三体問題における実際のミッションへの応用について述べる．

1. Intriduction

In the design of low-energy trajectories in the circular

restlicted three-body problem(CRTBP), it is known that

transport trajectories using trajectories called “transit or-

bit” play an important role [1] [2] [3]．A transit orbit

is defined as a trajectry that passes through the bottle-

neck region that connects the outside and inside of the

zero velocity curve, which is a forbidden region in the

CRTBP. Until now, much research has been done on pla-

nar transit orbits [4]．However, three-dimensional tran-

sit orbits with six-dimensional state variables have not

been considered so far. The purpose of this study is to

propose a design method of 3D transit orbit. As a result,

it is possible to design a transit orbit that can be injected

with the smallest velocity change from the position in-

formation of the spacecraft and to be useful for space

missions.

In this paper, characteristics of transit orbits and

design method in 6-dimensional phase space are ex-

plained. Specifically, after introducing the conventional

design method for transit orbits, we propose a new

design method that reduces the amount of calculation

by approximating the 2-dimensional surface created by

the velocity components of the Poincare section. The

new design method reduces the number of variables

to be considered by assuming the initial position

first, and as a result, the design can be perfomed in a

lower calculation cost. By the proposed method, we

investigate transit orbits for various values of the Jacobi

constant. As a result of examining the relationship

between the transit orbit and the Jacobi constant, it

was found that the Jacobi constant is very important in

designing transit orbits as well as the invariant manifold

in the CRTBP. Therefore, it is shown that the transit

orbit can be designed more easily by choosing the

Jacobi constant.

2. Basic equations

2. 1 Circular restricted three-body problem

The problem that three bodies are moving under

universal gravitation is called the three-body prob-

lem [5]．Consider the motion of two celestial bodies

of mass m1and m2 and mass point m. When the mass

m is sufficiently small compared to m1 and m2, the two

objects revolve around their common center of gravity.

The problem that the mass of one of these three bodies

is sufficientlly small compared with the mass of the

other two bodies and does not affect the motion of the

remaining two bodies is called the restricted three-body

problem. In particular, the revolving motion of two

celestial bodies is assumed to be a circular motion,

which is called the CRTBP.

2. 2 Equation of Motion

As shown in Fig.1, the origin is the center of grav-

ity of two celestial bodies (called the first celestial body

and the second celestial body respectively) with masses

of m1 and m2（assuming m1 > m2）. The direction from

the first celestial body to the second celestial body is the

x axis, the axis perpendicular to the x axis on the orbital

plane of the two celestial bodies is the y axis, and the z-
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Fig. 1: the Circular Restricted Three-body Problem

axis complete the right-handed system. Let the distance

from the mass point m to the first and second bodies

be r1 and r2, respectively. And the coordinates of the

mass point m, m1and m2 are
(
x，y，z

)
,
(
x1，y1，z1

)
and(

x2，y2，z2
)
, respectively. The universal gravitational

constant is G，the angular velocity of the celestial body

is ω, and the distance between the celestial bodies is d.

The equation of motion [7] for the mass m is

ẍ − 2ωẏ − xω2 =
Gm1

r3
1

(x1 − x) +
Gm2

r3
2

(x2 − x)

ÿ + 2ωẋ − yω2 =
Gm1

r3
1

(y1 − y) +
Gm2

r3
2

(y2 − y) (1)

z̈ =
Gm1

r3
1

(z1 − z) +
Gm2

r3
2

(z2 − z)

Where,

r1 =
√

(x − x1)2 + (y − y1)2 + (z − z1)2

r2 =
√

(x − x2)2 + (y − y2)2 + (z − z2)2

Introduce the nomalized time where the orbital period

is set to 2π, then ω = 1, the mass ratio µ = m2/(m1 +

m2) ≤ 0.5 where the two masses are 1−µ, µ, respectively,

and nomalized the distance where the distance of two

main bodies is set to d = 1. Then the equation of motion

of the non-dimensional mass point m is given by

ẍ − 2ẏ − x =
1 − µ

r3
1

(x1 − x) +
µ

r3
2

(x2 − x)

ÿ + 2ẋ − y =
1 − µ

r3
1

(y1 − y) +
µ

r3
2

(y2 − y) (2)

z̈ =
1 − µ

r3
1

(z1 − z) +
µ

r3
2

(z2 − z)

The position function U is defined as

U =
1

2
(x2 + y2) +

1 − µ
r1
+
µ

r2
+

1

2
µ(1 − µ) (3)
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Fig. 2: Lagrangian points

, then Eq.(2) becomes

ẍ − 2ẏ =
∂U

∂x
(4)

ÿ + 2ẋ =
∂U

∂y
(5)

z̈ =
∂U

∂z
(6)

Equilibrium points are obtained from the Eqs.(4), (5),

and (6), and these equiliburium points are called Lagra-

gian points. Lagragian points are classified as the colin-

ear solutions (L1，L2，L3) where gravity and centrifu-

gal force are balanced on a line connecting two celestial

bodies (y = 0) and equilateral triangle solutions (L4，L5)

where the gravity and centrifugal force are balanced at

y , 0. The location of lagrangian points are shown in

the Fig.2.

2. 3 Jacobi constant

From Eqs.(3)-(6), the Jacobi constant C is defined as

　　　 C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2U(x, y) (7)

Differentiating Eq.（7） with respect to time,

　　　Ċ = 0 (8)

can be obtained. Thus, the Jacobi constant is a constant

of integration in the CRTBP. It shoule be noted that it

is different from the mechanical energy. This will be

explained in detail in Chapter 3.
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Fig. 3: the zero velocity curve

2. 4 Zero velocity curve

The Jacobi constant described in the previous section

plays a important role like a total mechanical energy in

conservaitve mechanical system to place bounds on the

motion of the spacecraft. From the relationship

v2 = 2U(x, y, z) −C ≥ 0 (9)

there is a prohibited region where spacecraft motion is

not possible depending on the value of the Jacobi con-

stant. Fig.3 shows the forbidden regions (areas inside

the zero velocity curve) corresponding to the respective

C values.

3. Design method of transit orbit

In general, invariant manifolds of periodic orbits are

used when designing transit orbits. By cutting an in-

variant manifold with an appropriate Poincaré section

and setting the initial value inside the closed curve rep-

resenting the intersection of the invariant manifold of the

Poincaré section. However, there is a degree of freedom

in choosing periodic orbits, and it is possible to design

transit orbits even if the initial state is taken approxi-

mately. In this section, the method in which the transit

orbit was numerically analyzed by previous research is

first described, and then the new method is proposed.

3. 1 Previous research with numerical analysis of
Transit Orbit

In previous studies [6], transit orbits are compre-

hensively obtained by numerical search. Specifically,

the dimension of the initial six-dimensional variable

([x, y, z.ẋ, ẏ, ż]) is reduced to five-dimension by fixing

the Jacobi constant. Then, by fixing the initial x

coordinate, the dimension is further reduced by one

dimension. Then, the initial state for transit orbits

are found by exhoustive seach for the remaining four-

dimensional variables. In this method, the range of the

four-variable grid is determined by invariant manifolds

of the horizontal and vertical Lyapunov orbits. This

is because the invariant manifolds of the horizontal

Lyapunov orbit occupy the maximum region on the

x-y plane, and the invariant manifolds of the vertical

Lyapunov orbit occupy the maximum region on the z

axis direction. By using this method, almost all transit

orbits that exist in a particular Jacobi constant can be

obtained.

It is thought that all transit orbits can be examined by

the above method, but the problem is that the calculation

cost is too expensive. It was also shown that designing

transit orbits becomes more easy by using the relation-

ship with invariant manifolds.

3. 2 Design method of transit orbit in this paper

In the previous subsection, a method to generate the

transit orbits for a fixed Jacobi constant is introduced.

In this subsection, a new method where the initial posi-

tion (x, y, z) is fixed first, and a method to find all cor-

responding transit orbits is considered. Here, the Jacobi

constant is not fixed, which is different from the method

in the previous section [6].

First, the origin is set to the center of gravity in the

CRTBP of the Earth-Moon system, and the axis taken

45 degrees clockwise from the x axis is the x(re f ) axis

(Fig.4), and take the point [x(re f ), z] = [1.79, 0] on the

x(re f ) axis as the initial position. Next, a halo orbit

with a Jacobi constant of C = 3.095866 is obtained, and

an unstable manifold emanating from the halo orbit is

computed. At this time, the intersection of the x(re f )

axis plane and the invariant manifold is used as a de-

sign criterion (Fig.5)． In the proposed method, the ini-

tial position is fixed, so the variables to be considered

are the three velocity components ẋ, ẏ, andż. Consider

a Poincaré section in a three-dimensional phase space.

Figure.6 shows the closed curve consisting of (ẋ, ẏ, ż) of

invariant manifolds in the Poincaré section. A closer

look at the Poincaré section shows that it is a closed

curve in the ẋ − ẏ plane but is twisted in the ż direc-

tion. In general, considering that the transit orbit passes

through an invariant manifold in the Poincaré section, it

is necessary to take the state inside the area where this

curve is projected on each coordinate plane. However, if

This document is provided by JAXA.



Fig. 4: Assuming x(re f )

full search using a 3D grid requires, a considerable com-

putational cost. Therefore, the closed surface enclosed

by this closed curve is approximated by ż = f (ẋ, ẏ), and

the transit orbits are obtained by taking the state on the

surface. By doing this, it is possible to get a point in-

side each projection plane, and to calculate ż from ẋ and

ẏ. Figure.7 is an approximation of the surface created

by the velocity component curve. By using the approx-

imate function of this curved surface, all velocity com-

ponents can be calculated immediately. Taking the point

on this curved surface as the velocity component of the

initial state, the trajectories propagating from the points

are shown in Fig.8. The colors of the orbits correspond

to the Jacobi constant of the color bar. In Fig.8, there

are some trajectories that do not pass through the neck

region (for example, blue trajectories). If the Jacobi con-

stant is too large, the zero velocity curve is closed in

Fig. 5: Cutting invariant manifold at x(re f )
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Fig. 6: Poincaré section

the neck region. Then, trajectories cannot be transit or-

bits by being excluded by zero velocity curves. On the

other hand, when the Jacobi constant is small, the zero

velocity curve opens greatly and many transit orbits ex-

ist. However, it also indicates that trajectries are not ap-

proach the Earth. Furthermore, if the Jacobi constant is

too small, the velocity component becomes larger, so the

trajectries cannot be said to be a low energy orbits. This

result shows that the Jacobi constant determines whether

the trajectory can be a transit orbit even when propagat-

ing from the state inside the invariant manifold in the

Poincaré section. Moreover, it is possible to determine

the transit orbit that can approach the Earth by choosing

an appropriate Jacobi constant. In the section, by choos-

ing the Jacobi constant, design trajectories that can tran-

sition from outside the zero velocity curve to near the

Earth are shown.
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Fig. 7: Surface approximation in the velocity compo-
nent
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Fig. 8: Determining the initial state

4. Design of Transit Orbit approaching the Earth

From Fig.8, the Jacobi constant of the trajectories ap-

proaching the Earth is considered to be in the range of

3.05 to 3.15. In addition, trajectories that are greatly af-

fected by the Moon and cannot finally enter the inside

of the zero velocity curve are excluded because they are

insufficient as transport trajectories from the outside of

the Moon to the vicinity of the Earth. The result ob-

tained above is shown in Fig.9. It can be seen that those

trajectories pass through the neck of the zero velocity

curve and that can transition to the vicinity of the Earth.

From this result, it was found that the transit orbits pass-

ing through the initial position set by selecting the veloc-

ity component appropriately using the proposed method

can be obtained. Furthermore, by using them as candi-

dates, it is considered that a sufficient number of transit

orbits can be designed to design the optimal trajectory

according to the mission purpose. From the above, it

was found that the transit orbit can be designed by using

Fig. 9: Transit Orbits

the velocity curved surface. On the other hand, it be-

came clear that there are innumerable initial states that

can become transit orbits.

5. Conclusion

In this paper, a method to reduce the dimension by

approximating the curved surface of the velocity com-

ponent as a simpler method for calculating the transit

orbit is obtained. It was found that the transit orbit can

be designed by the proposed method. In addition, it was

found that the Jacobi constant is greatly related to the

characteristics of the transit orbit, and the trajectory can

be selected by adjusting the Jacobi constant.

From these results, it is considered that the future

prospects can be applied to deep space exploration

missions using low-energy trajectories. On the other

hand, some problems became clear. First, the invariant

manifold used to obtain the curved surface is associated

with a certain halo orbit, but the invariant manifold of

the halo orbit shows only a part of the whole transit

orbits, so that better transit orbit might exist. For this

reason, it is necessary to examine the distribution of

velocity components that become transit orbits using

invariant manifolds corresponding to whole halo orbit

family. Also it is necessary to relax the assumption of

fixed initial position inside the unstable manifold to

consider a method that can design transit orbits with

minimum thrust regardless of states of the spacecraft.
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