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Abstract

In general, a swing-by trajectory is designed in a two-body problem in a preliminary design or a case of the trajectory of the
spacecraft with high energy. In these cases, the swing-by trajectory is often designed by B-Plane with Patched conics method.
However, when the spacecraft has low energy, the approximation of the two-body problem does not hold. Therefore, in this study,
the B-Plane used in the two-body problem is extended to the three-body problem and analyze the influence of the secondary body
on parameters of the B-Plane of the swing-by trajectories.
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1. Introduction not be valid [5, 6]. Therefore, in this study, by designing the
) ) ) o B-Plane using the dynamics of the three-body problem, the
Swing-by orbit has been used in many missions and there . L o
] ] ] influence on the parameters constituting the B-Plane is inves-
are many studies on swing-by [1,2]. As examples, Galileo, . .
v | and Vi 5 utilized th b ] c tigated. Based on the obtained results, we compare the B-
oyagerl and Voyager?2 utilized the swing-by trajectory. Cur-
vag vag gy A Y Planes of the two-body problem and the three-body problem,
rently, DESTINY + under development by JAXA planes to use . .
] ) i and conduct a physical study on the obtained B-plane.
a multiple lunar swing-by in order to escape the Earth [3]. . . . .
] ) This paper is organized as follows. Chapter 2 describes how
Swing-by can change the velocity and the energy of the space- ) .
) i o ] to define B-Plane, and Chapter 3 shows simulation results.
craft without thrusting. Therefore, it is possible to make the . L
o ) Finally, the conclusion is stated.
mission term longer and suppress the fuel consumption.

Dynamical models used in trajectory design can be gener- y
ally divided into two types, a two-body problem and a multi-
body problem. Although it is desirable to consider the influ-
ence of more celestial bodies, it takes a lot of effort to design

the trajectory. For example, the case when the spacecraft has

high orbital energy with respect to the Earth is shown in Fig. The Sun fhe Earth

o

1. In this case, since the influence of the gravity other than

the Earth is small, the dynamics of the spacecraft can be re-
garded as a the two body problem. The characteristic of de- Fig. 1: High Energy Orbit
signing a trajectory in a two-body problem is that it can be
designed analytically. Therefore, the swing-by trajectory is
often designed by using B-Plane [4]. B-Plane is a plane per-
pendicular to the speed of the spacecraft toward the swing-by
target body, and the parameters on B-Plane has an analytical «—

s/C
relationship with the swing-by trajectory. On the other hand,

. S — X
the case when the spacecraft has low orbital energy with re- Thegn Hwegrth
spect to the Earth is shown in Fig.2. The approximation of the

two-body problem with the Earth does not hold, therefore, the

influence of other bodies than be Earth should be considered. . .
Fig. 2: Low Energy Orbit

In particular, trajectory design using the three-body problem

considering the effects of two-celestial bodies is often used.

The trajectory in the three-body problem can not be designed

analytically.

In the low energy, the analytical solution by B-Plane may
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2. How to define and set B-Plane

2.1 Equation of motion

The mass ration of the primary and secondary bodies are
expressed as
L
Moo= —t M
se ILL . + ILL s
. and W, indicate the gravity constant of the Earth and the
Sun, respectively. The equation of motion in two-body prob-

lem is expressed as
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The equation of motion in three-body problem is expressed as
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2.2 Definition of each specification
In this study, the Sphere of Influence (SOI) is defined as the
distance sufficiently away from the center of the gravity of the
swing-by target body, and the distance is calculated by
2
5
sor = e (“—) (12)
%
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As shown in Fig. 3, the velocity of the spacecraft at S OI as-
sumes the infinite velocity. Here, the infinite velocity is made
parallel to the x-axis.
2.3 Definition of B-Plane

To generate the B-Plane, first find the position vector B
from the center of the Earth when the infinite velocity crosses
the B-Plane is calculated. Trajectories are propagated from
the perigee to the SOI. At this time, the trajectory is a hyper-
bolic trajectory obtained analytically. When the asymptotic
line of this hyperbolic orbit is parallel to the x-axis, which is
a straight line connecting the Sun and the Earth, B is a vec-
tor whose direction is perpendicular to the asymptote from the
center of the Earth. Figure 4 shows this series of flows. Next,

when the position vector of the perigee 7, is rotated around

The Sun
The Earth

Fig. 3: Explanation of values required for swing-by

the x axis, B rotates simultaneously. The surface formed by
B is defined as B-Plane. In other words, when the velocity at
infinity enters perpendicular to the B-Plane, the trajectory that
reaches the perigee of the target is obtained. This is shown in
Fig. 5. The angle when the 7, is rotated around the x-axis is
6, and 1 to 360 deg.

B-Plane

Infinite velocity direction v,

B
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Fig. 4: Definition of B.

Infinite velocity direction v,
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Fig. 5: Definition of B-plane.

Specifically, to find B, we make a vector 7,y using the
viewpoint of v, from the center of the Earth. Find the angle
cos 6, between 7 ;,,; and v, by taking the inner product.

Voo * T i,
cosf, = 2 Jinal (13)
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Find B. z

B = ¥ final_point — bytart,paint (14) 96?"055 B "_‘C):E)Eplane
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Fig. 8: Definition of find 6,,,,,

the size of each angle.
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The parameters used in the simulation conditions for the

two-body problem are shown in Table 1. Fig. 9: Angle 6,.., between B and v, in the orbital plane

Table 1: Simulation condition values for two-body problems o R o
Earth’s gravity constant 4 ,[m?/s?] : 3986 x10° 8r e g B "u“ ,
Sun’s gravity constant & ([m3/s?] : 1.327 x 10" 6 ,*’ AN s
Earth’s revolution radiusr,, [km] : 1.496 x 108 st ; “\ 1
Earth revolution cycle T, [s] i 3.156x 107 Al !’ ) o
rso; [km] : 9247 x10° ol ‘ 5
Peripheral distance r, [km] : 1.000 x 10* ol ( i °E
Peripheral speed v, [km/s] : 8.929 \ ,5 ’
The angle of the near point vector 6,, [deg] :  1.192x 107 T \' / !
: 3 r""c “'u ! ;5
The plane spanned by the velocity vector v, and B at infin- - L '\ - -
ity is defined as the orbital plane. As shown in Fig. 7, let 0y, 108 08 04 02 0 02 04 08 08 s
be the angle between B and v, in the orbital plane. Also, Fig. 10: The angle 6,,,,, between B and v,, around the x axis

as shown in Fig. 8, let 6., be the angle between B and v,

around the x axis. The simulation results using B and 7, are 3.2 Simulation for three-body problem

Table 2 shows the parameters used in the simulation condi-

Qdeep

tions for the three-body problem. This time, in the three-body
problem of the sun-earth system, the Earth’s revolution cycle

is 27 and the earth’s revolution radius is 1.

Table 2: Simulation condition values for three-body problems

Non-dimensional gravity constant i 4[] : 3.003 x 10°°
Earth’s revolution radiusry, [-] : 1.000
Earth revolution cycle T, [-] : 2
rsor [-] : 0 6.181x 1073
Fig. 7: Definition of find e, Peripheral distance r,, [-] : o 6.6845x 107
Peripheral speed v, [-] : 0.2998
shown in Fig. 11 and Fig. 12.0,,., was constant at -5.969deg The angle of the near point vector §,, [deg] :  1.192x 107
and 6,5, was almost constant at 0.00deg, where, the radius of
the circle indicates the size of B, and the color bar indicates The vector B and B-Plane in the same way as in the two-
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body simulation. Based on this B, the values of 6., and Bertachini de Almeida Prado. “Lunar gravity assists using
patched-conics approximation, three and four body problems.”
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Fig. 11: Angle 6,,.., between B and v,, in the orbital plane

0,055 are found. However, the radius of the circle indicates
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Fig. 12: The angle 6., between B and v,, around the x axis

the size of B, and the color bar indicates the size of each
angle.

It was found that 6., takes the maximum value when 6, =
180deg, and takes the minimum value when 6, = 360deg.
It was also found that 6,,,,, takes the maximum value when

0. = 91deg, and takes the minimum value when 6, = 269deg.
4. Conclusion

In this study, we investigated the effect of the B-Plane used
in the trajectory design for the two-body problem on the pa-
rameters constituting the B-Plane when the three-body prob-
lem was designed with the dynamics. It was confirmed that
the B-Plane changed under the influence of the Sun. Future
work includes the analysis of swing-by trajectories with dif-
ferent energies to give more physical insights into trajectory

design.
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