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Abstract

In general, a swing-by trajectory is designed in a two-body problem in a preliminary design or a case of the trajectory of the
spacecraft with high energy. In these cases, the swing-by trajectory is often designed by B-Plane with Patched conics method.
However, when the spacecraft has low energy, the approximation of the two-body problem does not hold. Therefore, in this study,
the B-Plane used in the two-body problem is extended to the three-body problem and analyze the influence of the secondary body
on parameters of the B-Plane of the swing-by trajectories.

B-planeを用いた三体問題におけるスイングバイ軌道の解析
摘要

一般的に，スイングバイ軌道は初期段階での軌道もしくは高エネルギーを持つ宇宙機の軌道では二体問題で軌道設計され
る．この場合，スイングバイ軌道は Patched conics法を用いた B-Planeによって軌道設計が行われることが多い．しかし，
低エネルギーを持つ宇宙機の時．二体問題と近似することが出来なくなる．したがって，本研究では，二体問題で用いられ
る B-Planeを三体問題に拡張し，スイングバイ軌道のを用いて作られる B-Planeに対していくつかのパラメーターに注目し
て 2天体目の影響を分析する．

1. Introduction

Swing-by orbit has been used in many missions and there

are many studies on swing-by [1, 2]. As examples, Galileo,

Voyager1 and Voyager2 utilized the swing-by trajectory. Cur-

rently, DESTINY+ under development by JAXA planes to use

a multiple lunar swing-by in order to escape the Earth [3].

Swing-by can change the velocity and the energy of the space-

craft without thrusting. Therefore, it is possible to make the

mission term longer and suppress the fuel consumption.

Dynamical models used in trajectory design can be gener-

ally divided into two types, a two-body problem and a multi-

body problem. Although it is desirable to consider the influ-

ence of more celestial bodies, it takes a lot of effort to design

the trajectory. For example, the case when the spacecraft has

high orbital energy with respect to the Earth is shown in Fig.

1. In this case, since the influence of the gravity other than

the Earth is small, the dynamics of the spacecraft can be re-

garded as a the two body problem. The characteristic of de-

signing a trajectory in a two-body problem is that it can be

designed analytically. Therefore, the swing-by trajectory is

often designed by using B-Plane [4]. B-Plane is a plane per-

pendicular to the speed of the spacecraft toward the swing-by

target body, and the parameters on B-Plane has an analytical

relationship with the swing-by trajectory. On the other hand,

the case when the spacecraft has low orbital energy with re-

spect to the Earth is shown in Fig.2. The approximation of the

two-body problem with the Earth does not hold, therefore, the

influence of other bodies than be Earth should be considered.

In particular, trajectory design using the three-body problem

considering the effects of two-celestial bodies is often used.

The trajectory in the three-body problem can not be designed

analytically.

In the low energy, the analytical solution by B-Plane may

not be valid [5, 6]. Therefore, in this study, by designing the

B-Plane using the dynamics of the three-body problem, the

influence on the parameters constituting the B-Plane is inves-

tigated. Based on the obtained results, we compare the B-

Planes of the two-body problem and the three-body problem,

and conduct a physical study on the obtained B-plane.

This paper is organized as follows. Chapter 2 describes how

to define B-Plane, and Chapter 3 shows simulation results.

Finally, the conclusion is stated.

Fig. 1: High Energy Orbit

Fig. 2: Low Energy Orbit
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2. How to define and set B-Plane

2. 1 Equation of motion

The mass ration of the primary and secondary bodies are

expressed as

μse =
μe

μe +μs
(1)

μe and μs indicate the gravity constant of the Earth and the

Sun, respectively. The equation of motion in two-body prob-

lem is expressed as

d2 x
dt2 = −

μe

R3 x (2)

d2y

dt2 = −
μe

R3 y (3)

d2z
dt2 = −

μe

R3 z (4)

where

R =
√

x2 + y2 + z2 (5)

The equation of motion in three-body problem is expressed as

d2 x
dt2 = −

∂U
∂x

(6)

d2y

dt2 = −
∂U
∂y

(7)

d2z
dt2 = −

∂U
∂z

(8)

where

U = −1 −μse

r1
− 1 −μse

r2
− 1

2
(1 −μse)μse (9)

r1 =

√
(x +μse cos t)2 + (y +μse sin t)2 + Z2 (10)

r2 =

√
(x − (1 −μse) cos t)2 + (y − (1 −μse) sin t)2 + Z2

(11)
2. 2 Definition of each specification

In this study, the Sphere of Influence (SOI) is defined as the

distance sufficiently away from the center of the gravity of the

swing-by target body, and the distance is calculated by

rS OI = rse

(
μe

μs

) 2
5

(12)

As shown in Fig. 3, the velocity of the spacecraft at S OI as-

sumes the infinite velocity. Here, the infinite velocity is made

parallel to the x-axis.

2. 3 Definition of B-Plane

To generate the B-Plane, first find the position vector B

from the center of the Earth when the infinite velocity crosses

the B-Plane is calculated. Trajectories are propagated from

the perigee to the SOI. At this time, the trajectory is a hyper-

bolic trajectory obtained analytically. When the asymptotic

line of this hyperbolic orbit is parallel to the x-axis, which is

a straight line connecting the Sun and the Earth, B is a vec-

tor whose direction is perpendicular to the asymptote from the

center of the Earth. Figure 4 shows this series of flows. Next,

when the position vector of the perigee rp is rotated around

Fig. 3: Explanation of values required for swing-by

the x axis, B rotates simultaneously. The surface formed by

B is defined as B-Plane. In other words, when the velocity at

infinity enters perpendicular to the B-Plane, the trajectory that

reaches the perigee of the target is obtained. This is shown in

Fig. 5. The angle when the rp is rotated around the x-axis is

θx and 1 to 360 deg.

Fig. 4: Definition of B.

Fig. 5: Definition of B-plane.

Specifically, to find B, we make a vector r f inal using the

viewpoint of v∞ from the center of the Earth. Find the angle

cos θs between r f inal and v∞ by taking the inner product.

cos θs =
v∞ · r f inal

|v∞||r f inal |
(13)
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Find B.

B = r f inal point − bstart point (14)

Fig. 6: Calculation of B

3. Simulation Results

3. 1 Simulation for two-body problem

The parameters used in the simulation conditions for the

two-body problem are shown in Table 1.

Table 1: Simulation condition values for two-body problems

Earth’s gravity constantμe[m3/s2] ： 3.986 × 105

Sun’s gravity constantμs[m3/s2] ： 1.327 × 1011

Earth’s revolution radiusrse [km] ： 1.496 × 108

Earth revolution cycle Te [s] ： 3.156 × 107

rS OI [km] ： 9.247 × 105

Peripheral distance rp [km] ： 1.000 × 104

Peripheral speed vp [km/s] ： 8.929
The angle of the near point vector θrp [deg] ： 1.192 × 10−3

The plane spanned by the velocity vector v∞ and B at infin-

ity is defined as the orbital plane. As shown in Fig. 7, let θdeep

be the angle between B and vp in the orbital plane. Also,

as shown in Fig. 8, let θcross be the angle between B and vp

around the x axis. The simulation results using B and rp are

Fig. 7: Definition of find θdeep

shown in Fig. 11 and Fig. 12.θdeep was constant at -5.969deg

and θcross was almost constant at 0.00deg, where, the radius of

the circle indicates the size of B, and the color bar indicates

Fig. 8: Definition of find θcross

the size of each angle.
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Fig. 9: Angle θdeep between B and vp in the orbital plane
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Fig. 10: The angle θcross between B and vp around the x axis

3. 2 Simulation for three-body problem

Table 2 shows the parameters used in the simulation condi-

tions for the three-body problem. This time, in the three-body

problem of the sun-earth system, the Earth’s revolution cycle

is 2π and the earth’s revolution radius is 1.

Table 2: Simulation condition values for three-body problems

Non-dimensional gravity constantμse[−] ： 3.003 × 10−6

Earth’s revolution radiusrse [-] ： 1.000
Earth revolution cycle Te [-] ： 2π

rS OI [-] ： 6.181 × 10−3

Peripheral distance rp [-] ： 6.6845 × 10−5

Peripheral speed vp [-] ： 0.2998
The angle of the near point vector θrp [deg] ： 1.192 × 10−3

The vector B and B-Plane in the same way as in the two-

This document is provided by JAXA.



body simulation. Based on this B, the values of θdeep and

θcross are found. However, the radius of the circle indicates

-1 -0.5 0 0.5 1

10
-3

-1

-0.5

0

0.5

1

10
-3

5.335

5.34

5.345

5.35

5.355

5.36

5.365

5.37

[d
e
g
]

Fig. 11: Angle θdeep between B and vp in the orbital plane
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Fig. 12: The angle θcross between B and vp around the x axis

the size of B, and the color bar indicates the size of each

angle.

It was found that θdeep takes the maximum value when θx =

180deg, and takes the minimum value when θx = 360deg.

It was also found that θcross takes the maximum value when

θx = 91deg, and takes the minimum value when θx = 269deg.

4. Conclusion

In this study, we investigated the effect of the B-Plane used

in the trajectory design for the two-body problem on the pa-

rameters constituting the B-Plane when the three-body prob-

lem was designed with the dynamics. It was confirmed that

the B-Plane changed under the influence of the Sun. Future

work includes the analysis of swing-by trajectories with dif-

ferent energies to give more physical insights into trajectory

design.

References
1) Alessandra F. S. Ferreira, Antônio F. B. A. Prado, Othon C. Win-
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