
 

 

 

1 Introduction 

Confirming the status of space exploration at national 

scale, NASA, JAXA, and ESA are planning sample return 

missions for Mars and asteroids. Japan has achieved the 

world-leading result of asteroid sample return by Hayabusa, 

but deep space exploration missions aiming for beyond the 

moon have been conducted only once or twice in 10 years. 

There are still few opportunities to experience. 

One way to increase the opportunity to experience deep 

space exploration projects in a limited budget is to install a 

kick motor on a micro spacecraft. For example, as shown in 

Fig. 1, if a ride from the Low Earth Orbit (LEO) to Geo 

Transfer Orbit (GTO) to Geostationary Earth Orbit (GEO) is 

carried out and the speed is increased at perigee by a kick 

motor, it can reach the Venus at a speed of 1.06 km/s, and 

Mars at a speed of 1.15 km/s. Another possible method is to 

reach the moon at a small speed increase (0.7 km/s) and ob-

tain the speed increment to the target using lunar swing-by. 

The payload launch to deep space beyond the moon, which 

was carried out after 2000, was the lunar orbital satellite "Ka-

guya" in 2007, Venus probe "Akatsuki" in 2010, and the as-

teroid explorer "Hayabusa 2" in 2014. However, the total 

number of payload launch increases to 18 times, including 

beyond the GTO. Although not all of them can be shared, it 

is possible to secure opportunities at once every two years.  

To achieve the thrust and specific thrust required for kick 

motors, chemical rockets are necessary, and safe and low-

cost rockets are desirable. Hybrid rockets are the most suita-

ble rockets, because they can provide safety management 

compared to solid rockets and liquid rockets. Hokkaido Uni-

versity Laboratory of Space Systems, to which the author be-

longs, conducts ground combustion experiments and devel-

ops hybrid rocket kick motors.  
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We are designing lunar transfer orbits which micro probe with hybrid rocket kick motor can fly from geo transfer orbit. Kick 

motor acceleration performance is less than 1 km/s, and we adopt piggy back system, so we cannot decide the launch day and 
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摘要 

著者が所属する北海道大学大学院工学院宇宙環境システム工学研究室は小型のハイブリッドロケットキッ

クモータを開発している．JAXA と提携して開発する超小型探査機に搭載し，地球遷移軌道から月遷移軌

道に遷移させる際にキックモータを使用することでキックモータの実証を計画している．キックモータの

要求性能(増速量)が 1 km/s 以下であること，他の親機と一緒に打ち上げてもらうピギーバック方式を適用

する予定であるため，打上日が親機の都合に依存するということ，それにより地球静止軌道における形状

が一意に定まらないという課題が生じる．本稿ではこれらの要求を満たすために，地球静止軌道に関する

様々な条件を設定して，各条件における打上日と月遷移軌道に遷移する際に必要な増速量の関係を解析す

し比較検討することによって有効な条件は何かを議論する． 
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In our laboratory, to demonstrate hybrid rocket kick mo-

tors in the space, we plan the agenda "Kick motor research 

and development base for micro spacecraft" with JAXA. 

The implementation plan as FY30 is roughly divided into 

the following five elements[1]． 

(1) Development of kick motor 

・ Development of simple high-air combustion test 

facility 

・ Construction of fuel reverse speed formula 

・ Development of 6U class (~500N class) motors 

(2) Development of attitude control system 

Study of control law and start of response character-

istic acquisition experiment 

(3) Thermal design 

Examination by simplified nodal analysis under 

wider orbit conditions 

(4) Examination of orbit 

Examination of the Lunar Transfer Orbit (LTO) 

(5) Survey of demand and mission requirements 

Clarify design requirements for staged development 

targets and kick motors when targeting the Moon and 

Mars 

The authors are examining the trajectory corresponding to 

the above element (4). 

 

Fig. 1: Acceleration from GTO 

2 Design policy 

2.1 Premise conditions for this analysis 

There are two premise conditions for this mission. These 

conditions are treated as conditions that cannot be changed 

thereafter. 

① The performance of the kick motor is 1 km/s or less 

Since the kick motor of this mission is assumed to be 

a small-scale thing used for a micro spacecraft, the in-

crease speed performance is very small, 1 km/s or less. 

Therefore, there is a possibility that orbits which could 

be realized with past spacecraft cannot be used. 

② Apply a piggyback system. 

The piggyback system is a method of launching the 

spacecraft together with the main satellite using the 

launch capability of the rocket. It is less expensive than 

launching alone, and it has the advantage of increasing 

launch opportunities because it can be launched even in 

missions different from the main satellite. This mission 

will ride on the main satellite up to the GTO and aim 

for the moon from the GTO. The orbit from the GTO 

to the moon is expressed as Lunar Transfer Orbit (LTO). 

Moreover, in the piggyback system, the opportunity 

for launching the spacecraft depends on the mission of 

the main satellite, so there is a weak point that the or-

bital launch time cannot be selected freely for the micro 

spacecraft. Therefore, it is necessary to design a trajec-

tory that allows the spacecraft to be inserted into the 

moon even under various conditions.  

 

Based on the above conditions, the goal of this study is to 

analyze the amount of acceleration required to meet the 

moon and determine whether the required performance of the 

kick motor is satisfied. In this study, the following three con-

ditions were assumed for analysis. 

  

Ⅰ. Case of accelerating in the tangential direction from 

perigee 

Ⅱ. Case of restrictions on the orbit injection point are re-

moved 

Ⅲ. Case of the restriction on the speed direction is re-

moved (limited in-plane direction) 

 

2.2 GTO initial conditions 

Table 1 shows the initial conditions of the GTO in equato-

rial plane coordinate system. The equatorial plane is the or-

bital plane for the earth's equator, the lunar orbital plane is 

the orbital plane of the moon, and the ecliptic plane is the 

orbital plane of the sun. Their positional relationship is as 

shown in Fig. 2. The red ellipse represents the equator plane, 

the orange ellipse represents the ecliptic plane, and the pink 

ellipse represents the lunar orbital plane. 

 

Table 1: Initial conditions of GTO 

Perigee of GTO 𝑟𝑝[km] 300 

Semi-major axis 𝑎𝐸 [km] 2.442×10⁴ 

Eccentricity 𝑒𝐸 [-] 0.7265 

Inclination 𝑖𝐸 [deg] 30 

Argument of periapsis 𝜔𝐸 [deg] 0 or 180 

Longitude of ascending node Ω𝐸  [deg] 0~360 

 

 

Table 2 shows the initial conditions for the orbit of the 

moon in the equatorial plane coordinate system. 
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Table 2: Initial conditions of Lunar orbit 

Revolution radius from the earth 

center [km] 

384400(Approximate 

with circular orbit) 

The angle between the equator 

and lunar orbital plane 𝑖𝑀 

(Equatorial plane coordinate 

system)[deg][2] 

28.54 

Longitude of ascending node on 

lunar orbital plane Ω𝑀(Equato-

rial plane coordinate sys-

tem)[deg][2] 

125.08 

Argument of periapsis on lunar 

orbital plane 𝜔𝑀 (Equatorial 

plane coordinate sys-

tem)[deg][2] 

318.15 

 

Fig. 2: The relationship of each orbital plane 

3 Analysis method and results 

3.1 Case of accelerating in the tangential direction from 

perigee 

Give ΔV in the tangential direction at the perigee of GTO. 

Using the longitude of ascending node Ω as a parameter, we 

investigate the relationship with ΔV. Ignore the phase of the 

moon and spacecraft.  

In the equatorial plane coordinate system, the equinox 

point direction is set as the x-axis, the rotation direction of 

the earth (angular momentum direction) is set as the z-axis, 

and the position orthogonal to these two axes is set as the y-

axis.  

Set the perigee direction unit vector (𝐏𝐄), on the equatorial 

plane reference, the speed direction unit vector (𝐐𝐄), and the 

out-of-plane direction unit vector (𝐑𝐄) when accelerating in 

the tangential direction of the perigee as shown in Fig. 3 be-

low. 

 

Fig 3: Unit vectors in equatorial plane 

𝐏𝐄, 𝐐𝐄, and 𝐑𝐄 in the orbital plane coordinate system 

can be obtained by rotating the equatorial plane coordinate 

system in the order of Ω𝐸  (around the z axis)→𝑖𝐸(around 

the x axis)→𝜔𝐸(around the z axis). 

 

[

𝐏𝐄

𝐐𝐄

𝐑𝐄

]

= [
cos 𝜔𝐸 sin 𝜔𝐸 0

− sin 𝜔𝐸 cos 𝜔𝐸 0
0 0 1

] [
1 0 0
0 cos 𝑖𝐸 sin 𝑖𝐸

0 − sin 𝑖𝐸 cos 𝑖𝐸

] 

[
cos Ω𝐸 sin Ω𝐸 0

− sin Ω𝐸 cos Ω𝐸 0
0 0 1

] [
𝑥
𝑦
𝑧

] 

 

 (1) 

 

𝐏𝐄 = [

𝐜𝐨𝐬 𝝎𝑬 𝐜𝐨𝐬 𝛀𝑬 − 𝐬𝐢𝐧 𝝎𝑬 𝐬𝐢𝐧 𝛀𝑬 𝐜𝐨𝐬 𝒊𝑬

𝐜𝐨𝐬 𝝎𝑬 𝐬𝐢𝐧 𝛀𝑬 + 𝐬𝐢𝐧 𝝎𝑬 𝐜𝐨𝐬 𝛀𝑬 𝐜𝐨𝐬 𝒊𝑬

𝐬𝐢𝐧 𝝎𝑬 𝐬𝐢𝐧 𝒊𝑬

] (1) 

𝐐𝐄 = [
− cos Ω𝐸 sin 𝜔𝐸 − sin Ω𝐸 cos 𝜔𝐸 cos 𝑖𝐸

−sin Ω𝐸 sin 𝜔𝐸 + cos Ω𝐸 cos 𝜔𝐸 cos 𝑖𝐸

cos 𝜔𝐸 sin 𝑖𝐸

] (2) 

𝐑𝐄 = [
sin Ω𝐸 sin 𝑖𝐸

− cos Ω𝐸 sin 𝑖𝐸

cos 𝑖𝐸

] (3) 

Converts the coordinate axis in the equatorial plane refer-

ence to the coordinate axis in the lunar orbital plane reference. 

The lunar orbital plane coordinate system is set so that the 

x-axis is the perilune direction, the z-axis is the lunar revolu-

tion direction (angular momentum direction), the y-axis is 

perpendicular to the x-axis, and the z-axis with the earth cen-

ter as the origin.  

The rotation matrix is shown as follows from the posi-

tional relationship. 

𝐀(Rotation by Ω𝑀)

= [
cos 125.08° sin 125.08° 0

− sin 125.08° cos 125.08° 0

0 0 1

] 
(4) 

𝐁(Rotation by 𝑖𝑀)

= [

1 0 0

0 cos 28.54° − sin 28.54°

0 sin 28.54° cos 28.54°

] 
(5) 

𝐂(Rotation by 𝜔𝑀)

= [
cos 318.15° sin 318.15° 0

− sin 318.15° cos 318.15° 0

0 0 1

] 
(6) 

Set the unit vector after coordinate transformation as fol-

lows. 

𝐏𝐌(Perilune direction unit vector in lunar  

orbital plane reference) = 𝐂𝐁𝐀𝐏 

𝐐𝐌(Velocity direction unit vector in 

 lunar orbital plane reference) = 𝐂𝐁𝐀𝐐 

𝐑𝐌 (
Angular momentum direction unit vector in 

lunar orbital plane reference
)

= 𝐏𝐌 × 𝐐𝐌 
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Calculate the angular momentum using the following for-

mula. 𝑏𝐸 is the GTO semi-minor axis, and 𝑇𝐸  is the GTO 

period. 

ℎ1 =
2𝜋𝑎𝐸𝑏𝐸

𝑇𝐸

 (7) 

The position vector and velocity vector at the orbit injec-

tion point on the lunar orbital plane reference are shown as 

follows.  𝜇𝐸 is the gravity constant of the earth. 

𝒓𝟏 = 𝑟𝑝𝐏𝐌 (8) 

𝒗𝟏 =
𝜇𝐸

ℎ1

(1 + 𝑒𝐸)𝐐𝐌 (9) 

Now that we have defined the position vector and velocity 

vector, we calculated the GTO longitude of ascending node  

 Ω𝐸𝑀，argument of periapsis 𝜔𝐸𝑀，and inclination 𝑖𝐸𝑀 on 

the basis of the lunar orbital plane [3]．In the lunar orbital 

plane coordinate system, the unit vectors in the x-axis, y-axis, 

and z-axis directions are 𝐢̂, 𝐣̂, 𝐤̂ respectively. 

 

Fig. 4: Unit vectors in moon’s path plane 

The inclination 𝑖𝐸𝑀 can be obtained from the relationship 

between 𝐑𝐌 and 𝒌̂ by the following formula. 

𝑖𝐸𝑀 = cos−1(𝐑𝐌・𝐤̂) (10) 

Here, the value of 𝑖𝐸𝑀 is obtained in the range of 0° ≤

𝑖𝐸𝑀 ≤ 180° but this is determined solely because it matches 

the principal value of cos−1. 

Next, longitude of ascending node Ω𝐸𝑀 is the unit vector 

in the direction of intersection using, 

𝐍̂ =
𝐤̂ × (𝒓𝟏 × 𝒗𝟏)

|𝐤̂ × (𝒓𝟏 × 𝒗𝟏)|
 (11) 

Ω𝐸𝑀 = cos−1(𝐍̂・𝐢̂) (12) 

can be obtained．In that case, if 𝐍̂ ⋅ 𝐣̂ ≥ 0, Ω𝐸𝑀 can be ob-

tained as the main value of cos−1，that is, 0° ≤ Ω𝐸𝑀 ≤

180°, but 𝐍̂ ⋅ 𝐣̂ < 0, the value of Ω𝐸𝑀 must be in the range 

of 180° < Ω𝐸𝑀 < 360°, so can be obtained as follows. 

Ω𝐸𝑀 = 360° − cos−1(𝐍̂・𝐢̂) (13) 

Finally, argument of periapsis 𝜔𝐸𝑀 can be obtained by 

the following formula.  

𝜔𝐸𝑀 = cos−1(𝐍̂・𝐏𝐌) (14) 

In this case, if 𝐏𝐌 ⋅ 𝐤̂ ≥ 0, 𝜔𝐸𝑀 can be obtained as the 

main value of cos−1，that is, a value in the range of 0° ≤

𝜔𝐸𝑀 ≤ 180°, but 𝐏𝐌 ⋅ 𝐤̂ < 0, the value of Ω𝐸𝑀 must be in 

the range of 180° < 𝜔𝐸𝑀 < 360°  so can be obtained as 

follows. 

𝜔𝐸𝑀 = 360° − cos−1(𝐍̂・𝐏𝐌) (15) 

Since GTO and the lunar transfer orbit are on the same 

plane, Ω, ω, and i in these two orbits coincide, so if you 

know Ω𝐸𝑀, 𝜔𝐸𝑀, and 𝑖𝐸𝑀 of GTO after coordinate trans-

formation, you can adapt to the lunar transfer orbit. As a re-

sult, if the azimuth element in the transfer orbit is set to Ω𝑇𝑀, 

𝜔𝑇𝑀, 𝑖𝑇𝑀, 

Ω𝐸𝑀 = Ω𝑇𝑀，𝜔𝐸𝑀 = 𝜔𝑇𝑀，𝑖𝐸𝑀 = 𝑖𝑇𝑀 

are completed． 

Next, the equation of motion of the elliptical orbit, the 

expression representing the perigee and the far apogee, is 

expressed as follows.  

r =
𝑎(1 − 𝑒2)

1 + 𝑒 cos 𝑓
 (16) 

𝑟𝑝 = 𝑎(1 − 𝑒) (17) 

𝑟𝑎 = 𝑎(1 + 𝑒) (18) 

Where f is the true anomaly. The geocentric distance at the 

ascending intersection is set to 384400 km, and the value is 

equal to the revolution radius of the moon, so f =𝜔𝑇𝑀 can 

be substituted. 

Since 𝑟𝑝(perigee), r(distance from the earth to the moon 

384400 km), and f are known this time, unknowns are to de-

termine the semi-major axis a, the eccentricity e, and the ap-

ogee  𝑟𝑎. 

By expanding the equations (16) to (18), the eccentricity 

 𝑒𝑇𝑀，the semi-major axis 𝑎𝑇𝑀, and the apogee 𝑟𝑎𝑇𝑀
 in the 

lunar transfer orbit are obtained. Since the semi-major axis 

was found, the equation for calculating the velocity vector in 

the tangential direction of the perigee in the lunar transfer tra-

jectory was used. 

Case of the elliptical orbit 0<𝑒𝑇𝑀<1， 

𝒗𝟐 =
𝜇𝐸

ℎ2

(1 + 𝑒𝑇𝑀)𝐐𝐌 (19) 

Case of the hyperbolic trajectory (e>1)， 

𝒗𝟐 = √𝜇𝐸 (
2

𝑟𝑝

+
1

𝑎𝑇𝑀

) 𝐐𝐌 (20) 

Case of the parabolic trajectory (e=1)， 

𝒗𝟐 = √
2𝜇𝐸

𝑟𝑝

𝐐𝐌 (21) 

From this, the difference (𝒗𝟐 − 𝒗𝟏) between the GTO and 

the velocity vector of the lunar transfer orbit is obtained, and 

the acceleration amount ΔV can be obtained by taking the 

norm of the difference. 

The series of calculations was changed in the range of 
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Ω𝐸= 0°~360° on the equatorial plane reference. The result-

ing graph is graphed by taking the acceleration amount ∆V 

on the vertical axis and the ascending intersection longitude 

Ω𝐸  of the GTO in the equatorial plane coordinate system on 

the horizontal axis.  

(ⅰ) 𝜔𝐸 = 0° 

It will intersect at the descending intersection, not at the 

ascending intersection. 

 

Fig. 5: The relationship between ∆V and 𝛀𝑬 (𝝎𝑬=0°) 

(ⅱ) 𝜔𝐸 = 180° 

This is an intersection at the ascending intersection and not 

at the descending intersection. In addition, the acceleration 

peak was slightly larger than when 𝜔0=0°． 

 

Fig. 6: The relationship between ∆V and 𝛀𝑬 (𝝎𝑬=180°) 

The minimum value is ∆V = 0.68 km/s , when Ω𝐸 =

125°, 305°, and the range that satisfies the performance of 

the kick motor is Ω𝐸 = 76°~174°, 305°． 

Depending on the value of Ω𝐸 , it may be necessary to in-

crease the speed exceeding the kick motor performance (1 

km/s or less). Can be understood visually. 

Therefore, by expanding the condition of increasing the 

tangential direction at the perigee, the condition that the re-

quired acceleration amount decreases as a whole, the range 

of the longitude of ascending node Ω𝐸  that can be achieved 

with the acceleration amount of 1 km/s or less is expanded. 

We will examine the conditions to be performed.  

3.2 Case of restrictions on the orbit injection point are 

removed 

When accelerating at a point other than the perigee, the 

acceleration point becomes the orbit insertion point in the 

new transfer orbit, and the direction of the semi-major axis 

changes. This time, since ΔV is given in the tangential direc-

tion, the semi-major axis of the transfer orbit changes on the 

GTO orbital plane, and it is possible to contact the lunar orbit 

even at the longitude of ascending node that did not satisfy 

the condition when ΔV was given at the near point. 

Here, if the distance from the center of the earth to the ac-

celeration point is 𝑟1, it can be calculated by the following 

formula. 

𝜃 represents true anomaly. In this analysis, 𝜃 was varied 

in the range of −90°~90°． 

𝑟1 =
𝑎𝐸(1 − 𝑒𝐸

2)

1 + 𝑒𝐸 cos(𝜔𝐸 + 𝜃)
 (22) 

 

Fig. 7: The definition of the true Anomaly 

The position vector and velocity vector at the orbit injec-

tion point on the lunar orbital plane reference are shown as 

follows [4]. 

𝒓𝟏

= 𝑟1 [
cos σ cos Ω𝐸𝑀 − sin σ sin Ω𝐸𝑀 cos 𝑖𝐸𝑀

cos σ sin Ω𝐸𝑀 + sin σ cos Ω𝐸𝑀 cos 𝑖𝐸𝑀

sin σ sin 𝑖𝐸

] 
(23) 

𝒗𝟏 = −
𝜇𝐸

ℎ1

𝐴 (24) 

𝐴

= [cos Ω𝐸𝑀(sin σ + 𝑒𝐸𝑀 sin 𝜔𝐸𝑀)

+ sin Ω𝐸𝑀 (cos σ + 𝑒𝐸𝑀 cos 𝜔𝐸𝑀) cos 𝑖𝐸𝑀]𝑖𝑥

+ [sin Ω𝐸𝑀(sin σ + 𝑒𝐸𝑀 sin 𝜔𝐸𝑀)

− cos Ω𝐸𝑀 (cos σ + 𝑒𝐸𝑀 cos 𝜔𝐸𝑀) cos 𝑖𝐸𝑀]𝑖𝑦

+ [− (cos σ + e cos 𝜔𝐸𝑀) sin 𝑖𝐸𝑀]𝑖𝑧 

σ = 𝜔𝐸𝑀 + 𝜃 (25) 

Next, the velocity vector  𝒗𝟐  after the injection is ob-

tained at the orbit injection point. 
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When the velocity is changed, the following equation 

holds for the velocity vector before and after the injection. 

𝒗𝟐 = (1 + 𝛼)𝒗𝟏    (α: coefficient) (26) 

Here, α|𝒗𝟏| =ΔV(acceleration amount)，so if ΔV is set 

as a parameter, α can be obtained, and the velocity vector 𝒗𝟐 

after acceleration can be obtained．This time, ΔV was varied 

in the range of 0 km/s~2 km/s. Here, the angular momentum 

vector 𝒉𝟐 is obtained by the following equation. 

𝒉𝟐 = 𝒓𝟏 × 𝒗𝟐 (27) 

The position vector and velocity vector at the trajectory en-

try point in the transition trajectory are obtained, and using 

the method of keplerian from Cartesian, we can be obtained 

Ω𝑇𝑀, 𝜔𝑇𝑀, 𝑖𝑇𝑀, 𝑒𝑇𝑀, and 𝑎𝑇𝑀.  

Next, the geocentric distance at the ascending point (or 

descending point) is obtained by the orbital motion equation 

(16). This calculation obtains the condition that the geocen-

tric distance 𝑟𝑇𝑀 becomes the moon's revolution radius 

384400km. The ascending intersection longitude was fixed, 

and True Anomaly θ was moved in the range of 

−90°~90°, and the speed increase ΔV was moved in the 

range of 0 km/s～2 km/s. 

3.3 Case of the restriction on the speed direction is re-

moved (limited in-plane direction) 

The position vector 𝒓𝟏 is obtained from equation (8). If 

the velocity after acceleration is set to 𝒗𝟐, it can be defined 

by the following formula from Fig. 8. 

 

Fig. 8: The definition of the velocity vector 

𝒗𝟐 = 𝒗𝟏 + ∆V𝑐𝑜𝑠𝛽 × 𝐐𝐌 − ∆V𝑠𝑖𝑛𝛽 × 𝐏𝐌 (28) 

Since the position vector and velocity vector at the orbit 

entry point were obtained, the orbital elements were obtained 

as in 3.2. 

The analysis was performed by moving the ∆V direction 

∆𝛽 in the range of −90°~90°and the speed increase ∆V 

in the range of 0 km/s～2 km/s. 

 

3.4 Result 

Table 3 below summarizes the degree of freedom and the 

number of days allowed for launch under each condition.  

 

 

Table 3: The result 

Condition Degree of 

freedom[-] 

Launch possible days 

[day] 

3.1 1 102 

3.2 2 128 

3.3 2 104 

 

The number of days of Condition 3.2 that can be launched 

increased by 25.5% compared to Condition 3.1. Condition 

3.3 also increased slightly from condition 3.1. The launch 

date could not be covered all the year under either condition. 

 

4 Summary 

As a result of analysis under the condition of increasing 

the speed in the tangential direction at the perigee, there was 

a limit on the value of Ω𝐸  at which the lunar transfer orbit 

could be realized in the performance range of the kick motor 

(~1 km/s). As a result of analyzing the effect of increasing 

the degree of freedom by loosening the conditions, it was 

found that the selectable Ω𝐸  increased by 25.5% depending 

on the condition of increasing the speed in the tangential di-

rection near the perigee. It was also found that the increase in 

Ω𝐸  by increasing the in-plane direction other than the tan-

gential direction is not expected. 

In the future, we would like to analyze how much Ω𝐸  that 

can be achieved with the acceleration capability of 1 km/s or 

less, which is within the performance range of the kick motor, 

by increasing the degree of freedom further when accelerat-

ing in the out-of-plane direction at a perigee. 
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