
Optimal Attitude Control of Spacecraft Using Pyramid-type CMGs

By Ryo SAITO1), Yasuhiro SHOJI1), Satoshi SATOH1) and Katsuhiko YAMADA1)

1)Graduate School of Engineering, Osaka University, Osaka, Japan

This paper proposes a new method for time optimal attitude control of spacecraft using Pyramid-type CMGs. In this method, the
gimbal rates of the CMGs are determined only based on the time trajectories of the spacecraft attitude and the gimbal angles from the
initial state to the target one. These trajectories are generated as a solution of an optimization problem to minimize the maneuvering
time. Any “steering law” does not appear in the trajectory generating process, and thus, the singularity of the CMGs is not a problem
in this method. In this paper, we formulate optimization problems for generating the trajectories, and show a specific control algorithm
utilizing them. Finally, numerical simulations are performed to verify the usefulness of the proposed control method.

宇宙機のピラミッド配置型 CMGによる最適姿勢制御

齋藤涼（阪大・院），莊司泰弘（阪大），佐藤訓志（阪大），山田克彦（阪大）

本研究では，ピラミッド配置型 CMGによる宇宙機の時間最適姿勢制御の新たな手法を提案する．本手法において CMGの
ジンバル角速度は初期状態から目標状態に至る宇宙機の姿勢やジンバル角度の軌道によってのみ決定される．これらの軌道は

姿勢変更時間を最小化するような最適化問題を解くことによって生成される．いかなる「ステアリング則」も，この軌道生成

過程には登場しないため，提案手法においては CMGの特異点の存在は問題とならない．本稿では，軌道生成のための最適化
問題を定式化し，それらを利用した具体的な制御アルゴリズムを示す．最後に，数値シミュレーションにより，提案手法の有

用性を検証する．
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Nomenclature

J : inertia of spacecraft
ω : angular velocity of spacecraft
β : skew angle of Pyramid-type CMGs
hw : magnitude of angular momentum of wheel
CMGk : the kth CMG of Pyramid-type CMGs

(k = 1, 2, 3, 4)
hk : angular momentum of CMGk (k = 1, 2, 3, 4)
θk : gimbal angle of CMGk (k = 1, 2, 3, 4)
T : maneuvering time

Subscripts
0 : initial
f : final

1. Introduction

A momentum exchange actuator is useful for reorienting
spacecraft, because it consumes only electric power in general,
which can be replenished sustainably in space. A control mo-
ment gyro (CMG) is one of such devices. A CMG contains a
gimballed wheel that spins at a large and constant speed, and its
spin axis can be changed with respect to the spacecraft around
its gimbal axis. Changing the spin axis generates a gyroscopic
reaction torque orthogonal to both the wheel spin axis and the
gimbal axis, and it is significantly amplified relative to the gim-
bal torque input. In practice, a CMG can output orders of mag-
nitude higher torque for the power of an equivalent reaction
wheel, 1) which is another momentum exchange actuator.

A single-gimbal control moment gyro (SGCMG) has only
one degree of freedom, and thus, three or more SGCMGs are

generally used for the three-axis attitude control. However,
there are some combinations of gimbal angles where the de-
gree of freedom of the output torque becomes less than three
and CMGs cannot generate torque in certain directions. 2) In
those singular states, the gimbal rates for desired torque can-
not be obtained explicitly. Therefore, the singularity problem
is a serious obstacle to construct of a steering law, which deter-
mines the gimbal angles from the desired torque explicitly. Al-
though several authors have studied steering laws for avoiding
the singularity problem, 3) 4) 5) no complete solution has been
proposed.

This paper proposes a new method for time optimal attitude
control using Pyramid-type CMGs. In this method, the gimbal
rates are determined only using time trajectories of the space-
craft attitude and the gimbal angles from the initial state to the
target ones. These trajectories are generated as a solution of an
optimization problem to minimize the maneuvering time under
some capacity constraints of the CMGs. No “steering law” ap-
pears in the trajectory generation process, and thus, the singular
problem does not exist any more in this method. Furthermore,
the trajectories are updated repeatedly during the maneuver in
order to eliminate the attitude and gimbal angle errors caused
by disturbances.

In this paper, we first parametrize the trajectories with fi-
nite number of parameters using the method developed by
Nishiyama et al. 6) This method expresses each trajectory as a
weighted sum of triangle wave functions, and the optimization
problems for generating or updating the trajectories are formu-
lated in the form of finite-dimensional optimization problems.
Then, a specific control algorithm utilizing them is shown. Fi-
nally, numerical simulations of rest-to-rest attitude maneuver of

This document is provided by JAXA.



a spacecraft are conducted in order to verify the usefulness of
the proposed method.

2. Modeling

2.1. Pyramid-type CMGs
Consider a Pyramid-type CMG system which is composed

of four SGCMGs arranged as shown in Fig. 1. The x, y, and z
in Fig. 1 are the axes of the body-fixed frame Fb. The angular
momentum of each SGCMG is expressed as follows:

h1 = hw

− sin θ1 cos β
cos θ1

sin θ1 sin β

 , h2 = hw

 − cos θ2
− sin θ2 cos β
sin θ2 sin β

 ,
h3 = hw

sin θ3 cos β
− cos θ3

sin θ3 sin β

 , h4 = hw

 cos θ4
sin θ4 cos β
sin θ4 sin β

 . (1)

Assuming that each angular momentum of the gimbal rotation
is negligibly small, the total momentum of the Pyramid-type
CMGs, hc, is given by

hc(θ) =
4∑

k=1

hk(θk) (2)

where θ = [θ1, θ2, θ3, θ4]T. The attitude control torque τc by the
CMGs is expressed in the following form:

τc = −ḣc = −hw Aθ̇ (3)

where the matrix A is a Jacobian matrix of hc/hw, i.e. A =
(1/hw)∂hc/∂θ. The gimbal rates of the CMGs for the desired
control torque, τc, can be calculated directly from Eq. (3) as

θ̇ = − 1
hw

A†τc (4)

where A† is the pseudo-inverse matrix of A. In case the row
rank of A is not full, A† cannot be calculated, and then the
CMGs becomes singular.
2.2. Equations of Motion

In this subsection, it is assumed that the disturbance torque
exerted on the spacecraft is zero, and that the total angular mo-
mentum of the spacecraft, hs, is zero at the beginning of the
control. By the angular momentum conservation, hs is con-
served at zero during the maneuver, namely, the following rela-
tion holds:

hs = Jω + hc = 0. (5)

Accordingly, we obtain

ω = −J−1hc. (6)

The attitude of the spacecraft with respect to the inertial
frame is expressed by Rodrigues parameters. Rodrigues param-
eters are defined by the axis of rotation α̂ and the rotation angle
ϕ as follows:

p = α̂ tan
ϕ

2
(7)

CMG1

CMG2

CMG3

CMG4

Fig. 1. Pyramid-type CMG System

where p is a 3×1 vector. The kinematic equation relating to the
time derivative of Rodrigues parameters to the angular velocity
of the spacecraft is given 7) as

ṗ =
1
2

(I3 + p× + ppT)ω (8)

where p× is the following skew symmetric matrix associated
with the cross product of p = [p1, p2, p3]T:

p× =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 . (9)

By substituting Eq. (6) into Eq. (8), we obtain the relationship
between the gimbal angles of the CMGs and the Rodrigues pa-
rameters of the spacecraft as follows:

ṗ = −1
2

(I3 + p× + ppT)J−1hc(θ). (10)

3. Time optimal attitude control

3.1. Outline of the proposed method
In the proposed method, the gimbal rates of the CMGs are

determined from the time trajectories of the spacecraft attitude
and the gimbal angles from the initial state to the target one.
The outline of the proposed method is shown in Fig. 2.

As shown in Fig. 2, the control sequence is divided into two
phases, Time Minimization Phase (TMP) and Error Minimiza-
tion Phase (EMP). In the TMP, at first, the trajectories of the
spacecraft attitude and the gimbal angles which realize time
optimal transition of the attitude from the current one to the
target one are calculated, and the CMGs are controlled based
on them. If the gimbal angles are determined only by the first
generated trajectories, the final attitude may be different from
the target one due to modeling error, disturbance torque and so
on. Therefore, the trajectories are updated repeatedly in order
to eliminate errors at a fixed time interval ∆tu throughout the
maneuver.

When the attitude of the spacecraft reaches near the target
one, the trajectories cannot be updated because the optimization
problem for updating the trajectories becomes infeasible. That
is, before the state of the spacecraft reaches the target one com-
pletely, this control becomes unable to be continued, leaving
errors. To reduce the errors, the control moves to the EMP, and
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Fig. 2. Flowchart of the control sequence

the objective function of the optimization problem is changed
from the maneuvering time to the errors of the spacecraft atti-
tude and the gimbal angles.

In the following subsections, the optimization problems for
generating or updating the trajectories are formulated. The
pseudo-inverse matrix of the Jacobian matrix A is not used
throughout the formulation process. Thus, even when the
CMGs are in a singular state, the trajectories are generated or
updated successfully, and the control can be continued.
3.2. Modeling of trajectories

In order to formulate the optimization problems in finite
dimension, we set the trajectories with finite number of pa-
rameters. The trajectories of the gimbal rates of the CMGs,
θ̇k (k = 1, 2, 3, 4), and the second order time derivative of the
Rodrigues parameters which represent the attitude of the space-
craft, p̈ = [ p̈1, p̈1, p̈3]T, are expressed as weighted sums of N
triangle waves α1(τ), . . . , αN(τ) as follows:

θ̇k(t; uk,T ) =
N∑

i=1

ukiαi (τ(t; T )) , (11)

p̈k(t; uk,T ) =
N∑

i=1

vkiαi (τ(t; T )) (12)

where uk = [uk1, . . . , ukN]T, uk = [vk1, . . . , vkN]T, and τ(t; T ) is
non-dimensional time defined by τ(t; T ) = t/T . The triangle

waves α1(τ), . . . , αN(τ) are defined as follows:

αi(τ) B


1
∆τ

(τ − (τci − ∆τ)) (τci − ∆τ ≤ τ ≤ τci)
1
∆τ

((τci + ∆τ) − τ) (τci ≤ τ ≤ τci + ∆τ)
0 otherwise

(13)

where

τci = (i − 1)∆τ, ∆τ =
1

N − 1
(i = 1, . . . ,N). (14)

The trajectories of the other quantities such as the gimbal an-
gles θk (k = 1, 2, 3, 4) and the Rodrigues parameters p are de-
rived from the derivatives or integrals of Eqs. (11) and (12) as
follows:

θ̈k(t; uk,T ) =
1
T

N∑
i=1

ukiξi (τ(t; T )) , (15)

θk(t; uk,T ) = T
N∑

i=1

ukiβ̂i (τ(t; T )) + θk0, (16)

ṗk(t; uk,T ) = T
N∑

i=1

vkiβ̂i (τ(t; T )) + ṗk0, (17)

pk(t; uk,T ) = T 2
N∑

i=1

vkiγ̂i (τ(t; T )) + ṗk0t + pk0 (18)

where β̂i(τ) = βi(τ) − βi(0), γ̂i(τ) = γi(τ) − γi(0) − βi(0)τ,

βi(τ) =
∫ τ

−∞
αi(τ′)dτ′, (19)

γi(τ) =
∫ τ

−∞
βi(τ′)dτ′, (20)

ξi(τ) =
dαi(τ)

dτ
. (21)

3.3. Generating initial time minimization trajectories
At the beginning of the TMP, the initial time minimization

trajectories are generated as a solution of a non-linear program-
ming problem (NLP), which is formulated in this subsection.

Here, the following constraints are imposed on the gimbal
rates and angular accelerations:

|θ̈k | ≤ θ̈max, |θ̇k | ≤ θ̇max (k = 1, 2, 3, 4). (22)

These constraints (22) are equivalent to

1
T∆τ
| − uk,i + uk,i+1| ≤ θ̈max (i = 1, . . . ,N − 1), (23)

|uk,i| ≤ θ̇max (i = 1, . . . ,N). (24)

To satisfy the initial and final conditions, the following bound-
ary conditions are also imposed:

θ̇(0; ū,T ) = θ̇0, (25)

θ̇(T ; ū,T ) = θ̇ f , (26)
θ(T ; ū,T ) = θ f , (27)
p(T ; ū,T ) = pf (28)

where ū = [uT
1 , . . . , u

T
4 ]T and ū = [uT1 , . . . , u

T
3 ]T. Additionally,

the trajectories have to satisfy the kinematic constraint in Eq.

This document is provided by JAXA.



(10). We consider this constraint only at fixed times tK
i (i =

1, . . . ,NK) defined by

tK
i =

T (i − 1)
NK − 1

. (29)

The trajectories are uniquely determined by ū, ū, and T .
Therefore, the initial time minimization trajectories are ob-
tained by solving the following optimization problem:

min
ū,ū,T

T

subject to T ≥ 0, (23)-(28),

(10) at t = tK
i (i = 1, . . . ,NK).

(30)

3.4. Trajectory updating
The optimization problem (30) is expected to take long time

to be solved because it is an NLP, which cannot be guaranteed
to be solved within a finite time. However, the trajectories need
to be updated repeatedly at short intervals during the maneuver.
Therefore, a quicker solution is necessary to update the trajec-
tories. We introduce a linear programming problem (LP) as the
linearization of the NLP (30). In general, linear programming
problems can be solved efficiently within a finite time using a
technique such as the simplex algorithm.

We denote the vector of optimization variables of the NLP
(30) by x, i.e. x = [ūT, ūT,T ]T. We linearize the NLP
(30) around the constant vector x0, whose elements, uki,0 (i =
1, . . . ,N, k = 1, 2, 3, 4), vki,0 (i = 1, . . . ,N, k = 1, 2, 3),T0, are
defined by

uki,0 = θ̇k

(
∆tu +

Tlatest − ∆tu
N − 1

(i − 1); uk,latest,Tlatest

)
,

(31)

vki,0 = p̈k

(
∆tu +

Tlatest − ∆tu
N − 1

(i − 1); uk,latest,Tlatest

)
,

(32)
T0 = Tlatest − ∆tu (33)

where the subscript ·latest indicates the solution obtained in the
latest calculation.

We rewrite the constraints (23) and (24) derived from the
capacity of the CMGs as cP(x) ≤ 0. Similarly, the bound-
ary conditions (25)-(28) and the kinematic constraints (10) at
t = tK

i (i = 1, . . . ,NK) are rewritten as cB(x) = 0 and cK(x) = 0,
respectively. Then, cP, cB, cK are linearized around x = x0

into the following forms:

∂cP

∂x

∣∣∣∣∣∣
x0

∆x ≤ −cP(x0), (34)

∂cB

∂x

∣∣∣∣∣∣
x0

∆x = −cB(x0), (35)

∂cK

∂x

∣∣∣∣∣∣
x0

∆x = −cK(x0) (36)

where ∆x = x − x0. Equations (34)-(36) are linear constraints
with respect to ∆x. However, the constraint (36) is strict and
sometimes makes the problem infeasible. To deal with this, we
relax this equality constraint into an inequality one as follows:∣∣∣∣∣∣∣ ∂cK

∂x

∣∣∣∣∣∣
x0

∆x + cK(x0)

∣∣∣∣∣∣∣ ≤ η ∣∣∣cK(x0)
∣∣∣ (37)

where η is a relaxation factor and | · | is element-wise absolute
value. Additionally, to prevent that the change of the trajectories
become large, the following constraint is imposed:

|∆ū| ≤ ε14N (38)

where ε is a small positive real number and 1X is an X-
dimensional vector of all ones. Then, the optimization problem
(LP) for updating the trajectories is formulated as follows:

min
∆x

∆T

subject to T0 + ∆T ≥ 0, (34), (35), (37), (38).
(39)

3.5. Generating/updating error minimization trajectories
As T0 approaches zero, the LP (39) becomes infeasible and

the time minimization trajectories cannot be updated. To cope
with it, the control is switched to the EMP to converge the error
to zero. In this phase, the error minimization trajectories, which
realize the minimization of the attitude and gimbal angle errors,
are generated and updated by solving the optimization problem
formulated in this subsection. This problem is also to be solved
at short intervals during the maneuver as the LP (39), thus it
is formulated in the form of a quadratic programming problem
(QP).

First, the maneuver completion time T is fixed at T = Th, and
the objective function is defined as follows:

NQ∑
i=1

(
∥eθ(tQ

i ; ū)∥2 + µ∥ep(tQ
i ; ū)∥2

)
(40)

where eθ(t; ū) = θ(t; ū,Th) − θ f , ep(t; ū) = p(t; ū,Th) − pf , and
µ is a positive real number. tQ

i (i = 1, . . . ,NQ) are discrete time
defined by

tQ
i =

Th(i − 1)
NQ − 1

. (41)

Let θk (k = 1, 2, 3, 4) and pk (k = 1, 2, 3) be

θk = [θk(tQ
1 ; uk,Th), . . . , θk(tQ

NQ ; uk,Th)]T, (42)

pk = [pk(tQ
1 ; uk,Th), . . . , pk(tQ

NQ ; uk,Th)]T. (43)

They can be expressed as follows:

θk = ThBuk + θk01NQ , (44)

pk = T 2
hΓuk + ṗk0 tQ + pk01NQ (45)

where tQ = [tQ
1 , . . . , t

Q
NQ ]T. B = [Bi j] ∈ RNQ×N , Γ = [Γi j] ∈

RNQ×N are the matrices whose elements are defined by

Bi j = β̂ j(t
Q
i /Th), Γi j = γ̂ j(t

Q
i /Th). (46)

Furthermore, let θ̄ = [θT
1 , . . . , θ

T
4 ]T, p̄ = [pT

1 , . . . , p
T
3 ]T. They can

be expressed as follows:

θ̄ = ThB̄ū + θ̄c, (47)

p̄ = T 2
h Γ̄ū + p̄c (48)

where B̄ = block-diag[B, B, B, B], Γ̄ = block-diag[Γ,Γ,Γ].
Also, θ̄c and p̄c are:

θ̄c =


θ101NQ

...
θ401NQ

 , p̄c =


ṗ10 tQ + p101NQ

...
ṗ30 tQ + p301NQ

 . (49)
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The target values of θ̄ and p̄ are denoted as θ̄ f and p̄f , respec-
tively, that is,

θ̄ f = [θ1 f 1T
NQ , . . . , θ4 f 1T

NQ ]T, (50)

p̄f = [p1 f 1T
NQ , . . . , p3 f 1T

NQ ]T. (51)

Let ēθ = θ̄ − θ̄ f , ēp = p̄− p̄f , and ē = [ēT
θ ,
√
µēT

p]T, and then the
objective function (40) can be rewritten as follows:

ēT
θ ēθ + µē

T
p ēp = ēTē. (52)

From Eqs. (47) and (48), ē can be expressed as

ē = Py + q (53)

where y = [ūT, ūT]T,

P =
[
ThB̄ 0

0 √
µT 2

h Γ̄

]
, q =

[
θ̄c − θ̄ f√
µ( p̄c − p̄f )

]
. (54)

Therefore, the objective function ēTē can be rewritten as fol-
lows:

ēTē = (Py + q)T(Py + q)

= yT PT Py + 2qT Py + const.

= (y0 + ∆y)
T PT P(y0 + ∆y)

+ 2qT P(y0 + ∆y) + const.

= ∆yT PT P∆y + 2[PT(Py0 + q)]∆y + const. (55)

where y0 is a constant vector and ∆y = y−y0. Let H = PT P, f =
2[PT(Py0 + q)] and ignore the constant. Then, the objective
function is rewritten in the form of a quadratic function with
respect to ∆y as follows:

∆yTH∆y + f T∆y. (56)

Next, the capacity constraints of the CMGs (23), (24), the
initial condition (25), and the kinematic constraints ((10) at
t = tK

i (i = 1, . . . ,NK)) are considered. Note that the final
conditions (26)-(28) are excluded. These constraints are lin-
earized in the same way as Eqs. (34), (35), and (37), around
the constant vector y0, whose elements, uki,0 (i = 1, . . . ,N, k =
1, 2, 3, 4), vki,0 (i = 1, . . . ,N, k = 1, 2, 3), are defined by

uki,0 = θ̇k

(
∆tu +

Th

N − 1
(i − 1); uk,latest,Tlatest

)
, (57)

vki,0 = p̈k

(
∆tu +

Th

N − 1
(i − 1); uk,latest,Tlatest

)
. (58)

Let the capacity constraints, the initial condition, and the kine-
matic constraints be cP

q (y) ≤ 0,cB
q (y) = 0, and cK

q (y) = 0, re-
spectively. Then, the linearized constraints can be expressed as
follows:

∂cP
q

∂y

∣∣∣∣∣∣∣
y0

∆y ≤ −cP
q (y0), (59)

∂cB
q

∂y

∣∣∣∣∣∣∣
y0

∆y = −cB
q (y0), (60)∣∣∣∣∣∣∣∣ ∂c

K
q

∂y

∣∣∣∣∣∣∣
y0

∆y + cK
q (y0)

∣∣∣∣∣∣∣∣ ≤ η
∣∣∣cK

q (y0)
∣∣∣ . (61)

Additionally, the constraint (38) is also imposed for the same
reason as the LP (39).

From the above, the QP for generating and updating the error
minimization trajectories is formulated as follows:

min
∆y

∆yTH∆y + f T∆y

subject to (38), (59), (60), (61).
(62)

3.6. Control algorithm
The proposed control algorithm is shown below.

Algorithm 1
(Time Minimization Phase)

• Step 1: Observe the current values of θ, θ̇, p, and ṗ, then
set θ0 ← θ, θ̇0 ← θ̇, p0 ← p, and ṗ0 ← ṗ.

• Step 2: Calculate the solution x∗ of the NLP (30).
• Step 3: Set x← x∗ and start the timer.
• Step 4: Control the CMGs based on the gimbal angle ve-

locity trajectories set by the parameter x for ∆tu.
• Step 5: Observe the current values of θ, θ̇, p, and ṗ, then

set θ0 ← θ, θ̇0 ← θ̇, p0 ← p, and ṗ0 ← ṗ.
• Step 6: Calculate the solution ∆x∗ of the LP (39). If the

LP is infeasible, set ∆x∗ ← 0.
• Step 7: Set x← x0 + ∆x∗ and reset the time t to zero.
• Step 8: If T in x is greater than Tth, go back to Step 4.
• Step 9: Control the CMGs based on the gimbal angle ve-

locity trajectories set by the parameter x until t = T .

(Error Minimization Phase)

• Step 10: Fix T as T = Th.
• Step 11: Observe the current values of θ, θ̇, p, and ṗ, then

set θ0 ← θ, θ̇0 ← θ̇, p0 ← p, and ṗ0 ← ṗ.
• Step 12: Calculate the solution ∆y∗ of the QP (62). If

the QP is infeasible or the objective function value at the
solution is positive, set ∆y∗ ← 0.

• Step 13: Set x ← [yT
0 ,Th]T + [(∆y∗)T, 0]T and reset the

time t to zero.
• Step 14: Control the CMGs based on the gimbal angle

velocity trajectories set by the parameter x for ∆tu.
• Step 15: Go back to Step 11.

4. Numerical Simulations

In this section, the proposed control method is evaluated
through numerical simulations of rest-to-rest attitude maneuver
of a spacecraft.

The moment of inertia of the spacecraft, J, in the body-fixed
frame, the modeling error of the moment of inertia, Jerror, in
the body-fixed frame, the skew angle of the CMGs, β, and the
magnitude of angular momentum of the wheel hw are given by

J = diag[10, 10, 10] [kgm2],

Jerror =

0.4 0.5 0.2
0.5 −0.1 0.4
0.2 0.4 0.3

 [kgm2],

β = 45 [deg], hw = 1 [Nms].

The true moment of inertia, J t, is J t = J + Jerror. The upper
bound of the magnitudes of gimbal angular acceleration and
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velocity are set as

θ̈max = 5 [rad/s2], θ̇max = 1 [rad/s].

The parameters of the control algorithm are shown in Table 1.
The initial and target states are selected as

θ̇0 = [0, 0, 0, 0]T, θ0 = [0, 0, 0, 0]T, p0 = [0, 0, 0]T,

θ̇ f = [0, 0, 0, 0]T, θ f = [0, 0, 0, 0]T, pf = α̂ tan
ϕ

2
.

The simulations are performed in two cases. For each case, the
rotation axis α̂ and angle ϕ are shown in Table 2.

Table 1. Parameter of control algorithm

Parameters Values

N 30 (TMP), 10 (EMP)
NK 2N − 1
NQ 16N − 15
η 0.3
ε 0.2
µ 250
Th 1.5 s
Tth 0.3 s
∆tu 0.1 s

Table 2. Simulation cases

α̂ ϕ

Case 1 [1, 0, 0]T 20 deg
Case 2 1√

3
[1, 1, 1]T 20 deg

The simulation results in Case 1 and in Case 2 are shown
in Figs. 3 and 4, respectively. Figure 3(a) shows the gimbal
rates of the CMGs where the two black horizontal broken lines
indicate upper and lower constraints. Figure 3(b) shows the
gimbal angles. Figure 3(c) shows the attitude of the spacecraft
represented by Rodrigues parameters where the broken lines
indicate the target values. Figure 3(d) shows the singularity
of the CMGs, which is calculated as det(AAT) and becomes
small when the CMGs are near a singular state, and zero when
the CMGs are completely in a singular state. The black verti-
cal lines in these figures show the boundary between TMP and
EMP. Figures 4(a), (b), (c), and (d) have the same meaning as
above. As shown in Fig. 3, in Case 1, although the CMG is in
a singular state around t = 2 s, both of the attitude of the space-
craft and the gimbal angles of the CMG reach the target values.
The control is also performed properly in Case 2 as shown in
Fig. 4.

Figures 5 and 6 show the attitude errors ∥p − pf ∥ in Case 1
and Case 2, respectively. In each of the figures, (i) and (ii) show
the attitude errors in the following cases:

(i) [NLP + LP + QP] The CMGs are controlled completely
based on the proposed method (Algorithm 1).

(ii) [only NLP] Trajectory updating by solving the LP (39) or
the QP (62) is not executed. That is, the initial time opti-
mal trajectories from the NLP (30) is used throughout the
control.

(a) gimbal rates (b) Gimbal angles

(c) Attitude (d) Singularity

Fig. 3. Simulation results in Case 1

(a) gimbal rates (b) Gimbal angles

(c) Attitude (d) Singularity

Fig. 4. Simulation results in Case 2

(i) NLP + LP + QP (ii) only NLP

Fig. 5. Attitude error in Case 1

(i) NLP + LP + QP (ii) only NLP

Fig. 6. Attitude error in Case 2
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As shown in Figs. 5 and 6, the attitude error remains due to the
modeling error of the inertia Jerror when the trajectories are not
updated, whereas the error is eliminated when the trajectories
are updated both in Case 1 and in Case 2.

5. Conclusion

In this paper, the time optimal control of the Pyramid-type
CMGs is considered. The proposed method is composed of the
two phases, Time Minimization Phase (TMP) and Error Mini-
mization Phase (EMP). The maneuvering time is minimized in
TMP, and the error remaining from TMP is eliminated in EMP.
In both phases, the gimbal rates are determined based on time
trajectories of them generated previously. The trajectories are
updated repeatedly throughout the maneuver in order to elimi-
nate the attitude error due to disturbances. By parametrization
of the trajectories using triangle wave functions, the optimiza-
tion problems for generating and updating them are formulated
in the form of finite-dimensional optimization problems. The
numerical simulation results show that the CMGs are controlled
properly by the proposed method even when the CMGs become
in a singular state, and the usefulness of the proposed method is
verified.
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