

2.1-1 Annual ULTIMA General Meeting at San Francisco on Dec. 13, 2009

- ULTIMA Meetings
 - (1) at UCLA on Nov. 17, 2006
 - (2) at Kyoto on Oct. 24, 2007
 - (3) at Tsukuba on Nov.14, 2008
- Bylaws signed by members
 - Membership
 - Collaboration
 - Annual meetings
 - Communications

(Counterclockwise from the front left: Kiyo Yumoto, Brian Fraser, Peter Chi, Mark Moldwin, David Milling, Ian Mann, Vassilis Angelopoulos, Chris Russell; Not pictured: Ray Walker, Eftyhia Zesta) 3/30

<u>2.1-2 Purpose of ULTIMA</u> <u>Ultra Large Terrestrial Magnetometer Array</u>

- (1) ULTIMA is an international consortium that aims at promoting collaborative research through the use of ground-based magnetic field observatories.
- (2) ULTIMA is composed of individual magnetometer arrays in different countries/regions.

- (3) It provides a platform for each of them to easily and efficiently collaborate with other arrays in order to expand observation coverage.
- (4) It also helps identify the importance and need of individual arrays to continue operation or establish new stations in their host countries.

2.1-3. Present ULTIMA Members

Kiyohumi Yumoto (Chair)	MAGDAS/CPMN
Chris Russell	IGPP/LANL, THEMIS ground mag.
Brian Fraser	Australian Magnetometer Network
Ian Mann	CARISMA
Eftyhia Zesta	SAMBA
Mark Moldwin	MEASURE
Vassilis Angelopoulos	THEMIS ground mag.
Mark Engebretson	MACCS and AGO
Massimo Vellante	SEGMA
Peter Chi (Secretary)	McMAC, Falcon

• More members in the ground magnetometer community are being invited.

5/30

NAS

2.1-4 Connection to Science Satellite Projects

 Joint observations by satellites and ground magnetometers have been one widely used methodology to investigate a wider region of the geospace environment.

THEMIS—Time History of Events and Macroscale Interactions During Substorms
www.nasa.gov
(courtesy of NASA/THEMIS)

2.2-2 MAGDAS Installation 2008, Lagos, Nigeria

8/30

Sensor Hut

Construction

2.2-3 MAGDAS data come to SERC in real time

Space Environment Research Center Kyushu University

3.1 Imaging of MAGDAS Data (1) for Understanding of Solar wind-Magnetosphere-Ionosphere-Atmosphere Coupling system and its environment change AUG. 20, 2000 Iono. Sq Current **3-D Current System** 700 Solar wind-Magnetosphere 60 **Dynamo Current** 50 40 30 20 10 0 **Magnetic Latitude** $\Delta Z < 0$ Solar wind - Earth's **Magnetic Field Interaction** -10 -20 -30 -40 $\Delta Z > 0$ -50 onosphere-Atmosphere -60 **Dynamo Current** -70^L-**Ionospheric Plasma-**09 12 15 18 21 24 03 06 **Atmospheric Neutral Local Time Particle Interaction** (left) Global equivalent ionospheric current pattern obtained from the ordinary MAGDAS/CPMN data.

(right) Three-dimensional current system in geospace.

3.3 Empirical Sq Model by fitting Least-Squares Method

1. Solar Activity (SA)

$$F(SA) = a_{1} + a_{2}SA$$
2. Day of Year (DOY)

$$G(DOY) = b_{1} + \sum_{i=1}^{3} (b_{2i}\cos 2\pi \cdot DOY + b_{2i+1}\sin 2\pi \cdot DOY)$$
3. Local Time (LT)

$$H(LT) = c_{1} + \sum_{i=1}^{4} (c_{2i}\cos \frac{\pi i \cdot LT}{12} + c_{2i+1}\sin \frac{\pi i \cdot LT}{12})$$
4. Lunar Age (LA)

$$I(LA) = d_{1} + \sum_{i=1}^{2} (d_{2i}\cos \frac{\pi i \cdot LA}{12} + d_{2i+1}\sin \frac{\pi i \cdot LA}{12})$$

$$S = \sum (d_{j} - X_{j}(t_{j}))^{2}, \text{ where } X(t_{j}) = F \cdot G \cdot H \cdot I$$

$$d_{j} : \text{ observed values, } X_{j}(t_{j}): \text{ empirical model}$$
(See Kakinami et al., Ann. Geophys., 2009) 12/30

3.4 Solar Activity (F10.7) and Lunar Age

3.5 Dependence of Ionospheric Currents on Season

<u>3.6 Dependence of Ionospheric Current Density</u> on Season

3.7 Spherical Harmonic Analysis of Sq Variation

3.8 Sq Currents in the lonosphere and Lithosphere as a Function of Solar Cycle Activity (F10.7)

3.9 Solar Cycle Variation of Sq Current Intensity

<u>4.1-2 SC-性孤立擾乱 (SSD)による衛星破壊</u>

This document is provided by JAXA.

<u>4.2-2 各機関の観測研究の役割分担と連携</u>

4.3-3 Geomagnetic Data (HDZ) at HLN (~20km) and AMA (~900km) Stations during September 2009

4.3-3.2 Geomagnetic Data (HDZ) at HLN (~22km) and AMA(~900km) Stations during December 2009

<u>4.5 まとめ</u>

 1)太陽環境と地球環境と 一体化した地上衛星 観測研究

➡ 日地科学への展開

- "Living in the Atmosphere of the Sun"→ 「太陽大気と生きる」
- 2) 全球局所統合型観測
 - ・研究の南北問題の解決・人的ネットワーク形成
 - 30/30