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For a secure capturing of a space debris, approaching it from the direction of its angular momentum is effective.

A method of estimating the angular momentum vector of a non-cooperative object by using images and markers is

proposed. By putting markers on the target beforehand and tracking them in sequential images, the three-dimensional

motion of the object was calculated, resulting in estimation of the angular momentum vector. Considering a broken

satellite, the inertia tensor of the target object is assumed to be unknown.

1 Introduction

The amount of space debris has been increasing as

human begings launch more and more spacecraft. Cur-

rently it is estimated that the number of space debris

which are larger than 10 cm on the Low Earth Orbit

and larger than 1 cm on the Geostationary Transfer Or-

bit is more than 20000 [1]. Space debris are rotating

around earth with high speed, collision of spacecraft and

them would give destructive damages to the space crafts.

This means space debris might give a critical damage to

a mission. Also the number of space debris is increas-

ing. For these reasons,there is necessity to remove space

debris and lots of countries have been considering it.

One of the ways of estimating the motion of space

debris is to use images taken by chaser satellite like

Fig.1. In the area of computer vision, the reconstruction

of three-dimensional model from two-dimensonal images

has been studied. This can be done by tracking feature

points and it can be solved by nonlinear optimization.

By tracking the feature points on the debris, thier mo-

tion can be obtained [2, 3].
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Fig.1 Image of a spacecraft that takes pictures of a target

When we think about approaching space debris, the

way of approaching direction is important for safe ap-

proach. This is because the direction of angular mo-

mentum is the least likely way to go off course when

capturing. Considering that a space debris is tumbling,

there might be a destruction when chaser approaches the

target. To avoid this, we assume that the safest way of

approaching is to approach from the direction of angular

momentum of space debris . To achieve this, accurate

estimation of the angular momentum of the target is

needed.

In this study, we assume artificial markers are put on

the sattelite and it can be used as feature points. We

also assume that a satellite is physically breken and its

inertia tensor is unknown. This study focuses on the

capturing non cooperative object. To tackle the prob-

lem we conduct nonlinear optimization and estimate the

direction of angular momentum.
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2 Proposed Method

2.1 Setup

The following is the explanations for each parameters

as shown in Fig.2.

Fig.2 Image of each Parameters

ΣT represents the body-fixed frame and ΣC represents

the camera-fixed frame and sight direction is set as z

axis. R(t) [m] represents the distance between a target

and a camera in ΣC . Θ(t) [rad] represents the attitude

of a target in relative to a camera from ΣC to ΣT by

Euler angle. V (t) [m/s] and ω(t) [rad/s] represents the

relative velocity and relative angular velocity of a target

from ΣC to ΣT . r1, r2, r3 [m] represents the relative

distance of the marker to the center of the mass in ΣT .

I [kgm2] represents the moment of inertia of a target.

2.2 Models

Translational movement of the target is assumed to be

inertia movement. Attitude dynamics of the target are

described by Euler’s equation. In this case, we assume

thers is no disturbance so the torque is assumed to be

zero.

Iω̇ + ω × Iω = 0 (1)

where ω is the angular velocity of ΣT relative to ΣC .and

I is the inertia tensor of the target, respectively.

As a model of an image, we adopt a simple pinhole cam-

era model

 xcamera,i

ycamera,i

1

 = P


X(t, i)
Y (t, i)
Z(t, i)

1

 (2)

where xcamera,i, ycamera,i is the coordinate values on the

camera coordinate and X(t, i), Y (t, i), Z(t, i) is the co-

ordinate value on ΣC . Note that t means time and i

means the index of each markers. Matrix P is called

projection matrix which consists of internal parameters

K and external parameters[R | t]. R represents reta-

tional matrix and t represents translational vector. K is

represented by next equation.

K =

 f 0 x0

0 f y0
0 0 1

 (3)

where f is focal length, which is assumed to be 1 in

the simulation and (x0, y0) are image center, which is

assumed to be (0, 0).

By following equation (1), motion of the target is inte-

grated by Runge-Kutta method with an interval of 0.1 s

and markers are projected with an interval of 1 s. Initial

conditions are expressed by Table 1. To conduct non lin-

ear optimization, 12 images are used. Initial conditions

of each parameters are expressed in the table below. To

generate observations of the markers, the target body is

rotated with the given angular velocity and markers are

observed by a camera that remains still. This camera

is supposed to be ideal, so images can be taken with no

noises. Also we make an assumption that we can see

through target body and the markers are always seen

from the camera.

Table 1 Initial conditions

R r1 r2 r3

0.0 0.0 20.0 4.0 4.0 2.0 4.0 0.0 2.0 0.0 2.0 2.0

Θ V ω

0.0 π/3 π/3 0.0 0.0 0.0 0.0 0.1 0.1
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2.3 Procedures of the method

In this study, we use artificial markers as feature

points. We assume that markers are put before its

launch, and we can utilize them after the satellite be-

came a debris. And we assume a space debris is a phys-

ically broken satellite, so the moment of inertia of the

target is unknown. This study focuses on the estimation

when moment of inertia is unkown.

This method conducts nonlinear optimization of the

reconstruction of three-dimensional geometry including

the dynamics of the target. First thing to do is to give

initial guess to all the parameters and by following equa-

tion (1), calculate the three dimensional position of each

markers at each time. Secondly, by following equation

(2), we calculate the position on the image by using three

dimensional position. These process can be described by

using function f(x), which gives position on the image

from initial value x. Fig.3 shows one example of the

estimated position of markers on the image. After cal-

culating the guessed position on the image, we compare

guessed postion f(x) with the observed position y like

a picture shown in Fig.4. We calculate the sum of each

error as e. To get a maximum likelihood estimation, we

minimize this squared observation error. By expressing

gussed position as f(x), observed position as y, error

can be written as below. To optimize this equation, the

proposed estimation method consists of a least-square

method (levenverg Marquart method).

e =
∑

{y − f(x)}2 (4)

Fig.3 example of the guessed postion of the marker

Fig.4 comparing the guessed position botained from

guessed parameter x and observed position

3 Simulation

This section presents results of an simulation we con-

ducted with artificially-generated data. This data is

generated by using f(x) and can be used as observed

position.

3.1 Results

3.1.1 Result 1: Started with appropriate initial guess

Table 2 shows the result when initial guess started

with parameters that are close enough to real answers.

Table 3 shows that in this case the direction of the an-

gular momentum is accurately estimated but its scale is

Table 2 Result1

Initial guess Estimated value Truth

R 0.0 0.0 30.0 0.0 0.0 36.6 0.0 0.0 20.0

r1 5.0 2.0 2.0 7.3 3.6 3.6 4.0 2.0 2.0

r2 3.0 0.0 2.0 7.3 0.0 5.0 4.0 0.0 2.0

r3 0.0 1.0 2.0 0.0 3.6 3.6 0.0 2.0 2.0

Θ 0 π/3 π/3 0 π/3 π/3 0 π/3 π/3

ω 0 0.2 0.2 0 0.1 0.1 0 0.1 0.1

I 50 200 220 56 192 226 67 227 267
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Fig.5 Estimated position and actual position of the

markers

different. Fig.5 shows the actual position of the markers

and the estimated position of them. Black points repre-

sent the position of the center of mass and red, yellow

and blue points represent the position of the markers.

The position of the camera is represented by an orange

point. This suggests that this answer is the same motion

of the model with the different scale.

3.1.2 Result 2: Started with wrong initial guess

Table 4 shows the result when initial guess started

with parameters that is not close enough to real answers

and obtained answers were completely wrong. Fig.6

shows the true direction of angular momentum (green)

Table 3 Angular momentum L

L Normalized L

estimated -6.86 26.6 11.3 -0.231 0.895 0.381

true -8.08 31.3 13.3 -0.231 0.895 0.381

Table 4 Result2

Initial guess Estimated value Truth

R 0.0 0.0 35.0 4.5 -6.7 -0.79 0.0 0.0 20.0

r1 0.0 4.0 2.0 0.0 -9.0 13 4.0 2.0 2.0

r2 6.0 0.0 4.0 0.79 -4.5 6.6 4.0 0.0 2.0

r3 0.0 2.0 2.0 4.0 -4.5 6.8 0.0 2.0 2.0

Θ 0 π/3 π/3 0 π/3 π/3 0 π/3 π/3

ω 0 0.4 0.4 -0.5 0.7 0.0 0 0.1 0.1

I 100 200 220 158 159 159 67 227 267

Fig.6 Estimated angular momentum and true angu-

lar momentum

and estimated one (red). Its values are expressed in

Table 5. This clearly shows the estimated angular mo-

mentum does not correspond to the actual value.

3.1.3 When velocity is known

Table 6 shows the result when assuming that velocity

of the target is known and obtained the exact scale of

length. Still, norm of the I is not correct and norm of

the angular momentum is not correct. This is because

according to equation (1), norm of the I does not count

and ratios of each Ix, Iy, Iz count.

Table 5 Angular momentum L

L Normalized L

estimated -89.8 17.9 51.4 -0.855 0.171 0.490

true -8.08 31.3 13.3 -0.231 0.895 0.381

Table 6 simulation result when the velocity was known

Initial guess Estimated value Truth

R 0.0 0.0 30 0.0 0.0 20.0 0.0 0.0 20.0

r1 5.0 2.0 2.0 4.0 2.0 2.0 4.0 2.0 2.0

r2 3.0 0.0 2.0 4.0 0.0 2.0 4.0 0.0 2.0

r3 0.0 1.0 2.0 0.0 2.0 2.0 0.0 2.0 2.0

Θ 0 π/3 π/3 0 π/3 π/3 0 π/3 π/3

ω 0 0.2 0.2 0 0.1 0.1 0 0.1 0.1

I 50 200 220 110 375 442 67 227 267
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3.2 Discussion

Result 1 shows that when initial guess is close enough

to answers, exact direction of angular momentum is es-

timated, even though its scale is different form the an-

swers. Result 2 shows that exact answers for direction

of angular momentum is not obtained when initial guess

is not close enough. This suggests that this least square

method is sensitive to the initial guesses and it needs to

start with appropriate value. Therefore we need rough

estimation before this proposed method.

4 Conclusion

In this study, we presented a method for estimation

of angular momentum of space debris. The proposed

method successfully estimated the direction of anugu-

lar momentum of the target when initial guess started

with appropriate values. However the scales of the dis-

tance and angular momentum is not decided. Besides

the problem of uncertainty of scales, there is a prob-

lem of deciding the appropriate initial guess. Further

research has to be done to cope with these problems.
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