

○村中崇信¹, 臼井英之², 篠原育³

¹JAXA 情報・計算工学センター ²神戸大学 ³JAXA 宇宙科学研究所

第7回宇宙環境シンポジウム 2010.10.19-20 @東京国際フォーラム

太陽風プラズマ

- 1) Debye長~L_s(セイルのスケール長) - セイルの静電ポテンシャルはプラズマ によって遮蔽されるが、セイルからは十 分しみ出している
- 2) v_{ti} << v_d, v_{te}>v_d (v_t: 熱速度, v_d: ドリフト速 度)
 - セイル下流側にイオンのウェーク領域 が形成される

光電子

XXA

3) セイル上流側の日照面から放出(日照面は 膜面の導体側)

荷電粒子の空間分布:

- 放出面近傍からセイル周辺へと拡散: 光電子の空間電荷効果

2

セイル周辺のプラズマ挙動と帯雷特性を解析する意義

- 宇宙機構体電位の見積は,宇宙機搭載電子機器に対して必要不可 欠(安全性評価を含む)
 - ソーラーセイル:光電子, Vs~+10V
 - 荷電粒子の空間電荷効果が無視出来ない
 - セイル周辺の荷電粒子の分布が特異
 - 上流側の光電子放出、下流側のイオンウェイク
- 将来はソーラーセイルに電子・電気機器が搭載される計画
 - 上流側導体面(日照側):太陽電池,イオンエンジン(スラスタ側)
 - 各種計測器:太陽風計測装置,光学機器等

3

本研究の目的

将来の惑星間航行へのソーラーセイルの本格利用を視野に入れて, セイルと周辺プラズマとの相互作用の詳細を完全粒子シミュレーショ ンにより解析する(0.5,1.0,3.0AU環境についてそれぞれ解析)

• 宇宙機帯電状態

- 浮動電位,絶縁体の乖離電位(裏面wake側)
- 電流収集特性
- 荷電粒子の空間分布と電位分布の詳細
 - 下流側の大規模なイオンウェイク
 - セイル近傍の光電子分布

CD

4

GD

計算体系概略図

計	算パラメ	ータ	
	0.5AU	1.0AU	3.0AU
plasma density [10 ⁶ m ⁻³]	50	6	0.5
plasma temperature [eV]	40	10	5
drift velocity [km/s]		470	
mi/me (H+)		1836	
Debye length [m]	6.7	9.6	23.5
PE current flux [uA/m ²]	160	40	4.4
PE temperature (1) [eV]		1.5	
PE temperature (2) [eV]		5.0	
PE flux ration of PE1:PE2		9:1	
numerical domain [grid]		256*128*128	
object size [grid]		1*28*28	
dx [m]		0.5	
dt [s]	0.5x10 ⁻⁷	1.0x10 ⁻⁷	1.4x10 ⁻⁷
XA			

	Paramet	ers Obtail	ned from I	his Study	
	Debye length [m]	vd/vti	wake potential [V]	S/C potential [V]	Diff. potential [V]
0.5 AU	6.7 (0.48L)	5.3	-16.0 (-0.4Te)	-2.2 V	
1.0 AU	9.6 (0.69L)	10.8	-3.0 (-0.3Te)	+8.3 V	-15.8* (MUSCAT)
3.0 AU	23.4 (1.67L)	15.6	+0.1 (+0.02Te)	+11.2V	-11.2* (MUSCAT)
	le magnifi- cation: fm	PE dens layer	PE cloud (~0.1*ne)[m]	PE diffusion to the rear	
0.5 AU	0.91* (Vs<0)	~1.7x10 ⁸ m ⁻³ in 2.5m	20 (1.42L)	△partly	
1.0 AU	1.7	~3.2x10 ⁸ m in 1.5m	17.5 (1.25L)	0	
3.0 AU	2.6	~5.5x10 ⁷ m	17.5	\bigcirc	

