Van Allen Probes を用いた中高度軌道における 衛星電位の観測値と推定値の比較解析

長澤 恒聖, 中村 雅夫, 前田 紘孝

大阪府立大学

1. 研究背景と目的

人工衛星が軌道上を航行しているとき, その周辺プラズマを起因として衛星帯電を 生じることがある.また溜まった電荷を放 電することで故障することがある.実際, 1973 年~1997 年にかけて調査可能な衛星 について,宇宙環境由来の人工衛星の故障 原因を調べたところ, 衛星帯電・放電が約 半数を占め,そのうち約半数が表面帯電に よるものであると[1]報告されている.した がって, 衛星帯電を誘起する宇宙プラズマ 環境を解析することは重要な課題である. このプラズマ環境の解析は対地静止軌道 (GEO: Geostationary Earth Orbit), 低軌道 (LEO: Low Earth Orbit)について解析され た例は多いが、中軌道 (MEO: Medium Earth Orbit)について解析された例は多く ない. それは地球周辺の放射線帯の高エネ ルギー粒子により生じるコンタミネーショ ンやノイズが激しく,精度の良い長期の観 測データが十分に存在しなかったためであ る.しかし最近では、放射線対策がなされ た Van Allen Probes やあらせ衛星の観測に より,長期の精度の良いデータを利用でき るようになってきている.以上のことを背 景として, 本研究では Van Allen Probes の 観測データを用いて中高度軌道の深い衛星 帯電を誘起するプラズマ環境の解析を行っ た. また, 衛星帯電解析ソフトを用いたシ

ミュレーション結果から導出した衛星電位 の推定式を,今回解析した結果と比較して 考察をおこなった.

2. Van Allen Probes の観測と解析条 件

Van Allen Probes(以下 VAPs)は, NASA が地球周囲の放射線帯の調査を目的として, 2012 年 8 月 30 日に打ち上げた二機編隊の 衛星である. 表 2.1 は VAPs の基本データ であり, 図 2.1 は VAPs の外観である. 本機 は高精度観測を行うため表面が全て導通さ れている. 全て導通されていることによっ て表面部材間に生じる局所帯電は発生しな い.

表 2-1 VAPs の衛星データ

軌道高度	近地点:約600 km
	遠地点:約30600 km
軌道傾斜角	約10°
軌道種類	楕円軌道
軌道周期	約9時間
質量	A: 647.6 kg, B: 666.6 kg

図 2-1 VAPs の外観 [2]

VAPsの軌跡を,地球中心を原点,太陽方 向を X 軸, 公転方向逆向きを Y 軸, 黄道面 に垂直北方向を Z 軸とする Geocentric Solar Ecliptic(GSE)座標に表すと、その楕 円軌道の遠地点が約1年10カ月で一周す る.図 2-2 は軌道投入後最初の一周期の GSE 座標 XY 平面に投影した楕円軌道の遷 移を表したものである.この最初の一周期 で帯電の有無を解析した結果から, VAPs が 深く帯電するイベントは, 主に高度 20000 km 以上で日陰に存在する時に観測される ことが分かっている[3]. 本研究では, その ような領域を軌道が横切る 2013 年 3 月 1 日~31日の一ヶ月間を解析期間として設定 した.また地球の日陰にいる条件を満たす データを内包するように,GSE 座標におい $\tau X \leq 0, \sqrt{Y^2 + Z^2} \leq 6371$ (地球半径、単位 は km)の領域に VAPs が存在するときのデ ータのみを解析に用いた. 図 2-3 はこの領 域を GSE 座標の ZX 平面に図示したもので ある.

観測衛星電位を求める手段として, VAPs では Electric Fields and Waves(EFW)と Helium Oxygen Proton Electron(HOPE)の 観測機器を用いることができる. EFW は日 照で-200 V~200 V の範囲の衛星電位を観 測することができるが, 日陰の深い帯電に ついて解析するので, 本研究では HOPE を 用いた. HOPE はヘリウム, 酸素, イオン, 電子の四つについて, エネルギーごとのフ ラックスを観測している. HOPE の観測エ ネルギー帯は1eV~50 keV であり, 等比級 数的に 72 分割されている. この HOPE の フラックスデータを用いて, イオンのカッ トオフ(衛星が負に帯電した時に電場によ ってイオンが加速されて衛星電位程度のエ ネルギー帯に生じるフラックスのピーク) を検出することによって衛星電位を決定し た.また HOPE フラックスデータからモー メント法で計算した電子温度と電子密度が 公開されており,本研究ではこの公開され ている電子温度と電子密度を利用した.

図 2-2 GSE 座標 XY 平面に投影した VAPs の楕円軌道の遷移

図 2-3 GSE 座標の ZX 平面において X ≤ 0,√Y² + Z² ≤ 6371[km]を満たす領域

3. 衛星電位と電子温度の関係:VAPs と LANL 静止衛星の比較

VAPs の観測データより,中高度軌道で の衛星電位と電子温度の関係を調べた.そ して,LANL 静止衛星の観測データによる 静止軌道における衛星電位と電子温度の関 係[4]と比較した.図 3-1 は両者を同じグラ フに示した結果であり,黒点が LANL 静止 衛星, 赤点が VAPs を示している. 縦軸に 衛星電位の絶対値, 横軸に電子温度を取っ ており, 両軸とも対数スケールである. 深 く帯電している箇所については概ね一致し ているが, それ以外の所では明白な一致は 見られない. また LANL 衛星では図中の垂 直線で示した約 800 eV より大きくなると 衛星電位の絶対値と電子温度が比例するの に対して, VAPs ではそのような明白な相関 は見られない.

図 3-1 衛星電位と電子温度の関係(黒点: LANL 静止衛星[4], 赤点: VAPs)

VAPs の衛星電位と電子温度と電 子密度の関係

VAPs の衛星電位と電子温度の関係に電 子密度のパラメータを含めて解析をおこなった.図4-1は、図3-1のVAPsのデータを 衛星電位は 10⁰~10⁴ V,電子温度は 10³~ 10⁴ eV の範囲で切り出し,電子密度を対数 スケールのカラーバーとして 0.3~3.0 /cc の範囲で表したグラフである.この図から, ある衛星電位に対して,電子温度が低いと 電子密度が大きく,電子温度が高いと密度 が小さい傾向があることがわかる.また, より深く帯電しているのは高温で比較的低 密度の時である.

図 4-1 VAPs の衛星電位と電子温度と電子 密度の関係(カラーは電子密度)

図 4-1 で示されているデータは帯電を生 じている場合であるが,帯電を生じていな い場合のデータを含めた解析をした.図 4-2 は,縦軸は電子温度[eV],横軸は電子密度 [/cc]に取り,共にリニアスケールで表した. また衛星電位をカラーで対数スケールを取 って表した.カラーによって表される点は 衛星が帯電している場合であり,一方で灰 色の点は衛星が帯電していない場合を表す. ただしここでは,衛星電位が-10 V 以下で ある場合を帯電が生じているとする.この 図から電子温度が約 2 keV

図 4-2 VAPs の衛星電位と電子温度と電子 密度の関係(カラーは衛星電位)

より高く,電子密度が 0.3 /cc より大きくな

ければ,帯電を生じないことがわかった. ただしここでの温度はモーメント温度であ ることに注意する必要はある.一般に,高 温電子が衛星帯電を引き起こすことが知ら れているが,0.3/cc以下の低密度で高温と なっているものは,低エネルギー電子フラ ックスが HOPE の観測レベル(ワンカウン トレベルのフラックス値が高い)以下にな る一方,高エネルギーの電子フラックス (ワンカウントレベルのフラックス値が低 い)が少量でも観測された結果高温と計算 されている可能性がある.この場合,本当 の温度はもっと低いと考えられる.

衛星電位の推定式と解析結果の比較と考察

VAPsの衛星電位,電子温度,電子密度に ついての解析結果を,帯電シミュレーショ ンの結果から得られた日陰の電子温度に関 する VAPs の電位の推定式[5]と比較・考察 する.

シミュレーションは,次の仮定のもとに おこなわれた. ①電子・イオン密度はいず れも1/cc,電子温度は4~32 keV,イオン 温度は電子温度の1.9倍 ②プラズマ速度は シングルマクスウェル分布にしたがう.こ の結果から衛星電位の推定式が式(5.1)のよ うな形で求まる.

$$\Phi_{VAPs}(T_e) = AT_e + B/T_e + C \quad (5.1)$$

ここで A, B, C は定数であり, シミュレーション結果から値を決定された.

図 5-1 に,シミュレーションの結果と推 定式を表す.縦軸は衛星電位[V](負),横軸 は電子温度 [keV]であり,両軸ともスケー ルはリニアスケールである. 図 5-2 はこの 推定式を図 4-1 に重ねてプロットした結果 である. 図 5-2 から観測による衛星電位は 推定式を上限としてより深く帯電する側に 分布することがわかった. したがって推定 式は観測分布と比較して衛星電位を低く見 積もっている.

図 5-1 VAPs の帯電シミュレーションの結 果とその結果から得た衛星電位の推定式の グラフ

図 5-2 図4-1に推定式を書き加えたグラフ

推定式では,衛星帯電が生じ始める電子 温度(臨界温度)は図 5-1 から約 4 keV で あるが,この温度が 2~3 keV 付近と仮定し て推定式のグラフ全体を負の方向に 1~2 keV シフトすると,帯電分布と良い一致が 得られると考えられる. つまり VAPs では 衛星帯電の臨界温度が 2~3 keV と LANL 静止衛星より高く,臨界温度付近では推定 式のグラフで表されるように対数スケール の図では急峻に変化したと考えると,電子 温度と明白な相関が見られなかったことが 説明できる.また推定式が臨界温度分ずれ る理由としては次のことが考えられる. ① 速度分布の仮定が誤っている ②電子密度 などの周辺プラズマの仮定が,実際の環境 と異なっている ③衛星に用いられている 素材のパラメータが正しくない. これらが 実際に影響しているかどうかを,今後確認 する必要がある.

6. まとめ

本研究では深い衛星帯電を誘起する中高 度軌道のプラズマ環境の解析をおこなった. 中高度軌道の VAPs では,深い帯電は高度 20000 km 以上の日陰でおこるため、そのよ うな領域の衛星電位, 電子温度, 電子密度 の関係を解析した.また解析結果を帯電シ ミュレーションの結果から得た衛星電位の 推定式と比較し, 考察をおこなった. 静止 軌道の LANL 衛星の観測では衛星電位と電 子温度に相関が見られるが、VAPs の衛星電 位と電子温度に一見相関が見られないのは, VAPs では衛星帯電を生じ始める温度(臨界 温度)が高い(2~3 keV)ためであるという 可能性が示唆された.また,帯電は電子密度 が 0.3 /cc 以上かつ電子温度 2 keV 以上で起 こるという結果が得られた. シミュレーシ ョンの推定式の臨界温度が, 観測結果より 高めにずれてしまう原因は, 今後調べる予 定である.

7. 参考文献

修士論文

[1] H. C. Koons et al., "The impact of the space en Vironment on space systems", Proceedings of the 6th Spacecraft Charging Technology Conference, Air Force Research Laboratory, 77 AFRL- VS-TR-20001578, pp.7-11 (1998) [2] NASA Van Allen Probes Mission Overview 2011-2014 https://www.nasa.gov/sites/default/files/arraydepl oyment-orig_full.jpg [3] Lois K. Sarno-Smith et.al., "Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes", Space Weather, 2016, doi:10.1002/2015SW001345. [4] M.F.Thomsen et.al.,"Statistical properties of the surface-charging environment at geosynchronous orbit", Space Weather, VOL.11, 237-244, doi:10.1002/swe.20049,2013. [5]前田 紘孝 "静止軌道衛星の表面帯電性評価の ための電位推定法の開発"大阪府立大学 2019 年度