火星ヘリコプタ用ロータブレード平面形状の空力的最適設計

杉浦 正彦(宇宙航空研究開発機構),田辺 安忠(宇宙航空研究開発機構),菅原 瑛明(宇宙航空研究開 発機構),木村 桂大(宇宙航空研究開発機構),竹川 国之(菱友システムズ),大山 聖(宇宙航空研究開 発機構),佐藤 允(工学院大学),金崎 雅博 (東京都立大学),岸 祐希 (東京都立大学)

Aerodynamic Optimal Design of Mars Helicopter Rotor Blade Planform

SUGIURA Masahiko (JAXA), TANABE Yasutada (JAXA), SUGAWARA Hideaki (JAXA), KIMURA Keita (JAXA), TAKEKAWA Kuniyuki (Ryoyu Systems), OYAMA Akira (JAXA), SATO Makoto (Kougakuin University), KANAZAKI Masahiro (Tokyo Metropolitan University), KISHI Yuki (Tokyo Metropolitan University)

ABSTRACT

A conceptual study of Mars helicopter for the purpose of observation of the oval tunnels on the Mars has been carried out. Mainly from the limit of the storage size together with the Mars rover, a hexa-rotor drone is proposed with a gross weight of 3 kg. Each rotor consists of 4 blades while the rotor diameter is 460 mm. Optimized design of the airfoil to achieve higher hovering performance is being performed.

1. はじめに

火星大気や地形の観測等を目的に、これまで米国を 中心に火星探査が実施されてきたが、2020年は約2年に 1度の火星と地球の距離が近づくタイミングのため、米 国、中国、UAEの火星探査機が打ち上げられた。一方、 欧州とロシア共同で開発しているエクソマーズという 探査車は、2020年の打ち上げを予定していたが、 COVID-19の影響により2022年に延期された。これらの 国の中で、特に、米国はMARS2020というミッション で、火星表面より上空から観測するために、Ingenuity という同軸反転のヘリコプタをPerseveranceというロ ーバに付属する形で打ち上げた。このヘリコプタが無 事観測できれば、無人ヘリによる世界初の火星観測と なる。

我が国においては、宇宙理工学委員会国際宇宙探査 専門委員会(宇宙航空研究開発機構宇宙科学研究所) の下に「火星探査計画の科学探査タスクフォース」が 2018年11月に設置され、2019年2月に火星探査の戦略が 中間報告書1)としてまとめられている。この中間報告書 では、戦略的火星探査の技術ロードマップ(案)とし て、2024年の火星衛星探査計画(MMX; Martian Moons eXploration)に始まり、2026年頃の小型周回機による 火星宇宙天気・気候・水環境探査 (MACO; Mars AeroCapture Orbiter)、2030年頃の火星着陸探査が本格 的に検討されている。火星表面では放射線の影響で生 物が生存するには厳しい環境であるが、直径50m、深 さ100mほどの縦穴(ピット・クレーター、図1)がい くつか発見され、この穴は適温で放射線の影響も少な いことから、生物が発見される可能性が高いと考えら れている2)。2030年頃の火星着陸探査において、火星地 下水圏・生命圏の着陸探査としてこの地下空洞直接探 査が我が国独自に提案されている³⁾。地下空洞直接探査 においては、従来のローバの利用も可能であるが、移

動が困難かつ時間が大変かかるので、迅速に垂直方向 の移動が行えるヘリコプタの活躍が期待されている^{4.5)}。

図1 火星表面に観測された縦穴2)

なお、火星大気の大半は二酸化炭素で大気密度は地 球の 1.36%、音速は地球の 72%であり、地球大気に比べ て低レイノルズ数、高マッハ数の流れ場となることが特徴で ある。地球上においては、昆虫のようなセンチメートルサイ ズの翼が一般的に低レイノルズ数に分類され、これまで研 究されてきた。一方、火星大気では地球よりも高マッハ数と なるので、低レイノルズ数・高マッハ数で空力的に効率の 良いヘリコプタの形状を使用することが過酷なエネルギー 環境である宇宙では求められる。

本論文では、我が国独自の地下空洞直接探査を念頭 に、通常のヘリコプタ、同軸反転ヘリコプタ、マルチコプタ 等種々のヘリコプタの形態を比較・検討し、最適なブレー ド形状を提案する。

2. ミッション内容の検討

火星の縦穴につながる地下空洞の探査ミッション のイメージは図2に示す通りだが、火星探査へリコプ タはローバとともに運用し、ローバの補助を果たすも のである。通信もローバとの間での短距離のものなの で、飛行誘導もローバから受けるものと考えられる。 電力については、独自に太陽電池を備え、自己充電し て飛行ミッションを行うことが最も望ましく、 NASA-MH (Mars Helicopter)⁶⁰もこのタイプだが、機 体重量の制約から、ローバから充電を受けることも考 えられる。ただ、その際、火星ヘリやローバを正確に 充電できる位置へ誘導する必要があり、別の技術課題 が生じることになる。

図 3 に想定される縦穴や地下空洞の側壁などを撮 影・観測するミッション要求を示すが、ローバから 100m 水平飛行し、その後 100m の深さに降下し、地下 空洞を 150m 往復するミッションである。水平飛行速 度や上昇・降下の速度によって、ミッションの全飛行 時間が変わってくるが、撮影のことも考慮し、最大水 平飛行速度、降下・上昇速度とも、2m/s 程度と仮定す ると、全飛行時間は350秒程度になる。一般的に回転 翼機は一定の水平飛行速度を有した方が飛行効率が 向上するが、この程度の低速では、常にホバリング飛 行と同じパワー消費が必要であると仮定できる。撮影 と飛行制御性能を向上させることにより、飛行速度を 例えば、4m/s 程度に増やせれば、ミッション全体の飛 行時間が半減し、必要な電力も半減できるので、機体 のバッテリ重量などを削減することにつながり、今後 の検討課題としたい。

図2 火星上の地下空洞観測ミッション

図3 地下空洞探査ミッション要求

3. ヘリコプタ形態の比較検討

火星で飛行するヘリコプタの形態としては図4に示 すMHに採用された2重反転ロータ型のものがまず注目 される⁷⁾。機体をコンパクトにでき、大きなロータ面積 が取れて、ホバリング効率もよい。ただ、ロータ制御 機構が複雑であり、機体サイズが大きくなると、集中 駆動するモータも大きなものになってしまう。また、 火星での複雑な地形での運用を考えると、転倒した場 合の自己回復も困難と思われる。また、上面全体がロ ータであるため、空力性能に影響しない範囲での太陽 電池の取り付け面積の確保にも不利である。

火星で科学探査を実施できる次期ヘリコプタ(MSH: Mars Scientific Helicopter)は図5に示すように、マルチ ロータ型のものも検討されている⁸。全体の機体サイズ は大きくなるが、複数のロータの分散駆動のため、拡 張性に優れ、制御もロータの回転数制御の場合は、機 構が不要になる。転覆からの回復もロータの逆転など で可能であると考えられる。中央の胴体部などに太陽 電池の取り付け面積も確保しやすいなどの利点がある。 しかしながら、ロータの回転数制御の場合は、風への 対応が若干弱い恐れがある。

マルチロータ型ドローンの耐風性能を向上させる手 段として、図6に示すような可変ピッチ制御の機体が試 作されており、各ロータの制御応答時間が可変回転数 制御のものと比べ、1/10程度に短くなることが報告さ れている⁹。機構的にはヘリコプタのテールロータのピ ッチ制御のように、全ブレードのピッチ角を同時に変 更するための制御機構が必要であるが、図7に示すよう に、比較的単純な機構で実現可能である。

図8に2重反転ロータ、固定ピッチのマルチロータ、 可変ピッチのマルチロータの3種類の機体の各方面の 評価を比較したグラフを示す。青線は、2重反転ロータ、 赤線は、固定ピッチのマルチロータ、緑線は可変ピッ チのマルチロータをそれぞれ表している。この評価は、 著者らの見解であり、異論もあるかと思うが、独自性 も勘案すれば、可変ピッチ制御のマルチロータ型のも のを推したい。

図4 NASA-MHで採用された2重反転ロータ型⁷

Configuration: Co-axial Con Rotor Diameter: 1.21 m Ro Total Mass: 1.8 kg T

Configuration: Co-axial Rotor Diameter: 2.5 m Total Mass: ~20 kg Configuration: Hexacopter Rotor Diameter: 1.28 m Total Mass: ~20 kg

図5 NASAで検討しているMHとMSHの比較⁸⁾

図6 可変ピッチ制御の6ロータ試作機9

図7 ロータの可変ピッチ制御機構9)

図8 各種火星ヘリ形式の評価

4. 概念設計

我が国においても火星探査ローバの研究がなされて おり、図9に示すような探査ローバが提案されている¹⁰。 このローバの収納時(打ち上げ時)のサイズは1m× 0.8mであり、このサイズ内に収まる火星へリの設計が 望ましい。

図10に今回検討したHexa-Rotor型の火星ヘリの収納の様子を示す。ブレードを取り付け部で織り込むこと

により、4枚のブレードが90度以内に収めることができ、 モータを回す遠心力によって、ブレードを展開させる イメージである。一つのロータの直径は460mmで、6個 のロータで、全備重量3kgの機体を持ち上げる設計であ る。図11に示す概念設計においては、機体の空虚重量 は全備重量の43%程度と仮定し、搭載機器重量は約1.1 kgで、機体全備重量の20%をバッテリとすると、満充 電で最大約14分程度飛行できる計算である。洞窟探査 を満足できる計算ではあるが、実際の運用では、夜間 の機体搭載機器自体の保温のためにも電力が必要で、 充電はローバから取るか、太陽電池搭載で自己発電さ せるかなど、システム的な検討がさらに必要である。 また、可変ピッチ制御機構の重量軽減も課題である。 地球上の約1%程度の大気密度で機体を浮揚させる必 要があるため、ロータの回転数が7000RPMと非常に高 速で、1ロータの4枚のブレードで作り出す揚力はわず か2N弱で、ロータの設計においては、構造的にはブレ ードが受ける遠心力に耐えうる剛性の確保が一番の設 計課題であるように思える。

図10 火星探査ローバの収納サイズ (1m×0.8m) に合わせたHexa-Rotor型ドローン設計

図11 可変ピッチ制御のHexa-Rotor型火星ヘリの概念図

5. ブレード平面形状の最適化

前章の概念設計で得られたブレード形状をもとに、 飛行中の消費電力を最小限に抑え、ペイロードを増や すという観点で、ホバリング性能を最大化するねじり 角分布を求める。

5.1. 計算手法

Krigingモデルに基づく最適化手法によって、ロータ ブレードのねじり角を最適化した。なお、ホバリング 性能については翼素理論とCFDで同等の傾向が得られ るので¹¹⁾、計算コストを下げる観点から翼素理論を採 用した。ただし、翼素理論において、翼素に働く空気 力をマッハ数と迎角の空力テーブルから推算するが、2 次元のCFD計算を実施し、空力テーブルを作成した。 本概念設計ではNASA-MH同様、clf5605翼型と同等の 翼型を採用しているので、この翼型を対象に2次元の CFD計算を実施した。

5.1.1. 最適化手法

最適化手法には、Krigingモデルに基づき探索を行う 手法Efficient Global Optimization (EGO) ¹²⁻¹⁵⁾を採用する。 Krigingモデルを求める際に必要となる共分散は設計点 間の距離に基づき、正規分布に従うものとして求め、 探索手法には進化計算(Evolutionary Algorithm: EA)を 用いる。求められたKrigingモデルは誤差を含むことか ら, 解の改善量の期待値を表すExpected Improvement(EI)を最大化することによって最適化を進 める。EGOではEI値最大化によって求められた設計解 に対して、CFDによる評価を行ったうえで、Krigingモ デルの更新を行う。

5.1.2. 空力推算手法

空力推算手法には、翼素理論と2次元のCFDを使用した。翼素理論は、翼型の空力テーブルを参照して、翼 素の空力係数を補間するものである。なお、空力テー ブルは-180から180度の迎角をカバーし、マッハ数の効 果も含む。

CFD計算には、JAXAで開発しているFaSTAR¹⁶⁾を使 用した。FaSTARは、非構造格子に対応した圧縮性流体 解析ソルバである。

5.1.3. 2 次元 CFD 計算

本論文では、表1の計算条件で、2次元CFD計算を実施した。なお、表2に用いた計算手法を示す。

図14は使用した計算格子であり、コード方向に約400 点、コード方向に垂直方向に約200点ある。火星大気条 件は、¹⁷⁾を参照して、表3とする。

図15には、概念設計での翼端マッハ数(0.77)に近 いマッハ数0.7の流れ場を示す。迎角-15°から20°の範 囲で5°刻みの流れ場の様子である。この図より、迎角 5°で既に前縁より剥離している様子がわかる。このよ うにして、2次元CFD計算した結果から、迎角と揚力係 数、抗力係数の関係にまとめたものが図16,17である。 17)とほぼ同じ傾向である。

	表1 計算条件
一様流マッハ数,	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
Mach	0.9, 1.0
迎角, <i>a</i>	$-15^{\circ} \sim 20^{\circ}$
	(Mach= $0.5 \mathcal{OF}$ - $180^{\circ} \sim 180^{\circ}$)
Re 数	1,470~14,700

表 2 計算手法		
CFD ソフトウェア	FaSTAR	
支配方程式	N-S	
数值流束関数	SLAU	
粘性項	2 次精度中心差分	
勾配計算法	WGG	
空間高次精度化	U-MUSCL (χ =0.0)	
時間積分法	DTS/LU-SGS	
乱流モデル	なし	

表 3 火星大気条件

大気密度	0.017 kg/m^3
比熱比	1.289
音速	233.099 m/s
一様流マッハ数	0.4
コード長ベースの Re 数	1.38×10^{5}
迎角	-5~10°(1°刻み)

(a) 迎角-15°

(b) 迎角-10°

(d) 迎角0°

(e) 迎角5°

(f) 迎角10°

(g) 迎角15°

(h) 迎角20°図15 マッハ数0.7のときの流れ場

5.1.4. ロータ性能

前節で翼型の空力性能について確認できたが、次に、 前節で得られた空力テーブルを利用して、ロータ性能 の検証を行う。図18,19にNASA-MHとのロータ性能を 比較したグラフを示す。図18は推力係数とパワー係数 の関係、図19は推力係数とフィギュアオブメリットの 関係である。なお、黒線はNASA-MHのロータ性能で、 2枚ブレードを2重反転にした機体で、ロータ性能は CAMRAD-IIと呼ばれるロータ解析ソフト、2次元空力 係数はCFDで求められた結果である。破線は、2次元 CFD計算の乱流モデルで完全に乱流と仮定したもの、 実線は、層流から乱流に遷移するモデルである。一方、 青線は、4枚ブレードのシングルロータを翼素理論によ り推算した性能である。この図より、NASA-MHの運 用推力係数(機体重量1.8kg、図中赤線)近辺では、翼 素理論でロータ性能をおおよそ予測できていることが わかる。ただし、高推力係数では、翼素理論は失速と 抵抗増大の2次元翼型特性の影響により、急激に性能が 低下する。したがって、翼素理論では、性能予測がで きる推力係数の限界には注意する必要がある。

図18 NASA-MHとのロータ性能比較(推力係数とパワ 一係数の関係)

図19 NASA-MHとのロータ性能比較(推力係数とフィ ギュアオブメリットの関係)

5.1.5. 平面形状の最適化

前節において、高推力係数を除いて、翼素理論でロ ータ性能を推算できることを確認したので、翼素理論 を用いてブレードの平面形状を最適化する。目的関数 は、ホバリング性能、すなわち、フィギュアオブメリ ットである。4章より、火星へリのロケットフェアリン グへの収納上、図20のようなブレード形状が得られた。 翼型はclf5605翼型と同等のものを使用している。本節 では、ブレードのねじり角について最適化を実施する。 図20には、設計変数の制御点も合わせて示してある。 加えて、表4には、設計変数とその制約条件を示す。ブ レードの翼根とスパン方向75%位置でねじり角を0° とし、コード長が最大となる位置と翼端でねじり角を 変更する。また、スパン方向60%から90%の任意の位 置でもねじり角を変更する。なお、これらのねじり角 の間の分布は3次スプラインにより補間する。

表5にはブレードの最適設計条件、すなわち、飛行条件、ロータ諸元を示す。このとき、平均揚力係数は0.500、 ブレード荷重係数は0.084となる。NASA-MHの飛行条件では、平均揚力係数0.437、ブレード荷重係数0.073 であるが、本論文同様に平均揚力係数0.500を利用する と、ブレード荷重係数は0.083となり、両者はロータ性 能として比較可能である。

図21に最適化の履歴を示す。青の点は初期値のラン ダムなサンプルで、オレンジの点が最適化の過程のサ ンプルである。なお、ねじり角なしの場合のホバリン グ性能(フィギュアオブメリット)も合わせて赤線で 示してある。ねじり角なしの場合とねじり角を最適化 した結果を比較すると、フィギュアオブメリットが約 15%増加していることがわかる。ホバリング性能の向 上は、火星ヘリの消費電力に直結しているため、15% の性能向上は効果的であることがうかがえる。また、 図22には、最適化により得られたブレードのねじり角 分布を青線で示す。スパン方向90%まではゆるやかな ねじり角だが、そこから翼端にかけては、10°ほどの 大きなねじりがあることがわかる。図23には、設計変 数r2、θt3に対する目的関数のKrigingモデルを示す。 目的関数の最大値が一山となっており、設計変数r2、 θt3が支配的な要素で、大域的な探索により妥当な解 が得られていることがわかる。

得られた最適ねじり角分布のときのスパン方向の有 効迎角と垂直力の分布を、図24と図25にそれぞれ示す。 図24より翼端での変動があるものの、スパン方向に向 けて緩やかに有効迎角が減少していることがわかる。 それにともない、図25のように、翼端では垂直力がほ ぼゼロで、スパン方向に沿ってほぼ線形な垂直力が得 られている。これは、最もトルクが大きくなる翼端で の抵抗を減らし、ホバリング効率を向上させているた めと考えられる。

図20 ブレード設計変数の制御点

表4 ブレード設計変数および制約条件

設計変数	制約条件
制御点2のブレード半径位置, r2	r/R=0.6~0.9
ねじり角 (r/R=0.483), θ ₁	-10° $\sim 20^{\circ}$
ねじり角 ($r/R=r_2$), θ_{t_2}	-10° $\sim 20^{\circ}$
ねじり角 (r/R=1.0), 0 _{t3}	-20° $\sim 10^{\circ}$
ねじり角 ($r/R=0.28$), θ_{t0}	0.0°
ねじり角 (r/R=0.75), 0 _{t0.75}	0.0°

表5 ブレード最適設計条件

飛行条件	ホバリング
ロータ半径	0.230 m
等価コード長	0.044 m
ソリディティ	0.184 (AR=6.9)
翼端マッハ数	0.761 (<i>Vtip</i> =177 m/s)
ブレード枚数	4枚
設計推力	$1.86 \text{ N}(C_T = 2.10 \times 10^{-2})$

図22 最適化したブレードのねじり角分布

図23 Krigingモデル (変数:r2、θt3、目的関数:フ ィギュアオブメリット)

図24 有効迎角の分布

図25 垂直力の分布

6. おわりに

本論文では、2030年代の火星着陸探査を念頭に、火 星ヘリコプタの具体的なミッション内容の検討、ヘリ コプタ形態の比較検討、概念設計、ブレード平面形状 の最適化を実施した。まず、縦穴や地下空洞の側壁な どを撮影・観測するミッション要求にもとづき、保守 的な飛行速度ではあるが、火星ヘリの飛行時間を推定 した。つぎに、ヘリコプタの形態を、機体の複雑さ、 転倒時の自己回復能力、機体での充電等の観点で、通 常のヘリコプタ、同軸反転ヘリコプタ、マルチコプタ について比較した。その結果、マルチコプタが有利で あると判断した。特に、可変ピッチ制御は、通常の回 転数制御の1/10の応答時間となるので、採用した。さ らに、我が国で検討されている火星ローバに搭載する ことを前提に、マルチロータのブレードのサイズや折 り畳みを設計した。最後に、この概念設計で得られた ブレード形状について、ねじり角の分布を最適化した。 その結果、ねじり角なしの場合に比べて、ホバリング 性能が15%ほど向上することが示された。今後はこの 数値解析結果を風洞実験で検証する予定である。また、 本研究では、既存の翼型を採用したが、翼型について も最適化を実施し、さらなる性能向上を図る。

参考文献

- (1) 臼井寛裕,石上玄也,笠原慧,亀田真吾、関華奈子, 関根康人,長勇一郎,寺田直樹,野口里奈,藤田和 央,宮本英昭,山岸明彦,吉岡和夫,「宇宙理工学 委員会 国際宇宙探査専門委員会 火星探査計画の 科学探査タスクフォース 中間報告書」, 2019.
- (2) Cushing, G. E., Okubo, C. H. and Titus, T. N., "Atypical pit craters on Mars: New insights from THEMIS, CTX, and HiRISE observations," J. Geophys. Res. Planets, Vol. 120, No. 6, 2015, pp. 1023–1043.
- (3) Haruyama, J., Kawano, I., Iwata, T., Nishibori, T., Yamamoto, Y., Otsuki, M., Sakurai, M., Shimada, K. and the UZUME research group, "Japan's Exploration of Holes and Caves on the Moon and Mars – UZUME Project," 2nd International Planetary Caves Conference, Arizona, LPI Contribution No. 1883, 2015, p.9012.
- (4) 青木理紗子,大山聖,藤田昂志,永井大樹,加納健 佑,井上菜生,曽我部崇,金崎雅博,「火星の縦孔 探査のためのヘリコプターの概念設計」,第61回宇 宙科学技術連合講演会,新潟県新潟市,2017年10 月 25-27 日.
- (5) Aoki, R., Oyama, A., Fujita, K., Nagai, H., Kanou, K., Inoue, N., Sokabe, S., Kanazaki, M., Tomisawa, K., and Uwatoko, K., "Conceptual Helicopter Design for Exploration of Pit craters and Caves on Mars," AIAA SPACE and Astronautics Forum and Exposition, Orlando, Florida, September 17-19, 2018.
- (6) NASA RELEASE 18-035, "Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission," https://www.nasa.gov/press-release/marshelicopter-to-fly-on-nasa-s-next-red-planet-rover-missio n, May 12, 2018.
- (7) Grip, H. F., Lam, J., Bayard, D. S., Conway, D. T., Singh, G., Brockers, R., Delaune, J. H., Matthies, L. H., Malpica, C., Brown, T. L., Jain, A., San Martin, A. M.,

and Merewether G. B., "Flight Control System for NASA's Mars Helicopter," AIAA SciTech 2019, San Diego, CA. AIAA 2019-1289, January 7-11, 2019.

- (8) Withrow-Maser, S., Koning, W., Kuang, W., Johnson, W., "Recent Efforts Enabling Future Mars Rotorcraft Missions," The VFS Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA, January 21–23, 2020.
- (9) Yonezawa, K. Yoshida, N., Sugiyama, K., Tokutake, H., Tanabe, Y., Sunada, S., "Development of a Multicopter with Ducted and Variable Pitch Rotors," 5th Asian/Australian Rotorcraft Forum, Singapore, Nov. 17-18, 2016.
- (10) Ishigami, G., Fujita, K., Hatakenaka, R., Toyota, H., Sato, T., Takai, M., Nonomura, T., "Mission Scope Definition and Preliminary Design Study of Mars Surface Exploration Rover," Proceedings of the 30th International Symposium on Space Technology and Science (ISTS 2015), 2015.
- (11) Sugiura, M., Tanabe, Y., Sugawara, H., and Takekawa, K., "Optimal Design of Rotor Blade for a Winged Compound Helicopter at High Advance Ratio," Vertical Flight Society's 76th Annual Forum & Technology Display, October 6-8, 2020.
- (12) Kanazaki, M., Yokokawa, Y., Murayama, M., Ito, T., Jeong, S. and Yamamoto, K., "Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 51, No. 173, 2008, pp. 146-150.
- (13) Kanazaki, M., Jeong, S. and Yamamoto, K., "High-Lift System Optimization Based on Kriging Model Using High Fidelity Flow Solver," Transactions of Japan Society for Aeronautical and Space Science, Vol. 49, No. 165, 2006, pp. 169-174.
- (14) Jeong, S., Murayama, M., Yamamoto, K., "Efficient Optimization Design Method Using Kriging Model," Journal of Aircraft, Vol. 42, No. 2, 2005, pp.413-420.
- (15) Jones, D. R., Schonlau, M., and Welch, W. J., "Efficient Global Optimization of Expensive Black-Box Functions," Journal of Global Optimization, Vol. 13, 1998, pp. 455–492.
- (16) Hashimoto, A., Murakami, K., Aoyama, K., Ishiko, K., Hishida, M., Sakashita, M., and Lahur, P., "Toward the Fastest Unstructured CFD Code 'FaSTAR'," 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, January 09-12, 2012.
- (17) Koning, W. J. F., Johnson, W., and Grip, H. F., "Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses," AIAA Journal, Vol.57, No.9, 2019.