

September 28th, 2020

Aerodynamic Analysis for NASA-CRM Using "FaSTAR", "BOXFUN" and "HexaGrid"

Nomoto Kyousuke ^{ab}, Yakeno Aiko ^b, Obayashi Shigeru ^b ^a Department of Aerospace Engineering, Tohoku University ^b Institute of Fluid Science, Tohoku University

Contents

Objects and targets of this study

■Setup of "FaSTAR"

■Grid configuration

Difference between "BOXFUN" and "HexaGrid" grids

Results

Convergence histories of aerodynamic coefficients

Comparisons of aerodynamic coefficients

Comparisons of aerodynamic coefficients' errors

□Pressure distributions on the wing surface at 18.08° AoA

Conclusions

Objects and targets of this study

Objects

□ To compare aerodynamic coefficients of two types JAXA-provided grids for RANS calculations on the NASA-CRM in low-speed and high-AoA.

□ To examine the effect of the grid differences on the accuracy of CFD predictions of aerodynamic performance.

Targets of calculations

□NASA-CRM(Body + Wing + Tail, Non-deformation, Non-support)

Setup of "FaSTAR"

Solver			FaSTAR				Μ		0.168		
Discretization method			Cell-centered FVM				T _{ref}		310K		
Inviscid Flux			HLLEW-scheme				Re		1.06E+06		
Viscous Flux			Central difference method				Cref		1.0000		
viscous l'iux			Central unicience method				b _{ref}		4.1942		
Time Integration			LU-SGS				S _{ref}		3.90926		
Turbulence Model			SA-noft2-R				(X.Y.Z)		(4.8075, 0.0, 0.64521)		
Grid			BOXFUN / HexaGrid				(,-	,,	(-,, -	
AoA	-3.22	-0.67	2.89	5.95	9.01	10.03	11.05	12.06	13.08	14.08	18.08
BOXFUN	0	0	0	0	0	0	0	0	0	0	0
HexaGrid	0	0	0	0	0	0	0	0	0	0	0

Note: In this study, only Task 1 (steady-state) was calculated

Difference between "BOXFUN" and "HexaGrid" grids

Results: Convergence histories of aerodynamic coefficients

Results: Comparisons of aerodynamic coefficients (1)

Results: Comparisons of aerodynamic coefficients' errors

10

Conclusions

The following results were shown by this study

- The aerodynamic coefficients at low AoA are faithfully reproduced from experiments
- The prediction accuracy of the aerodynamic coefficients at high AoA is low
- The difference in the moment coefficient at 18.08° AoA between the "BOXFUN" and "HexaGrid" grids was caused by the following factors :
 - □ The negative pitching moment of the "BOXFUN" case was higher than that of the "HexaGrid" case because:
 - 1. The negative velocity region at the upper surface of the wing in the "BOXFUN" case was larger than in the "HexaGrid" case
 - 2. The velocity distribution on the upper surface of the tail in the "BOXFUN" case is higher than in the "HexaGrid" case