TASを用いたNASA-CRMの空力解析 Aerodynamic Analysis for NASA-CRM using TAS solver

金沢工業大学大学院 金沢工業大学

○鹿田 侑右

佐々木 大輔

Kanazawa Institute of Technology Graduate School
Kanazawa Institute of Technology

OSHIKADA Yusuke SASAKI Daisuke

2020/09/28

Sixth Aerodynamics Prediction Challenge

Summary for Simulation Method

Objective

Investigate the following two points about CFD code "TAS".

- · Slope of lift curve in low-speed and low-AoA
- Tendency of C_L and C_m in high-AoA

■ Simulation method

CFD Code : TAS (Tohoku Univ. Aerodynamic Simulation Code)

· Computational mesh : In-house mesh generated by MEGG3D

Simulation case : Case 1

■ Simulated AoA

Submit data is Medium

Coarse: -3.22 / -0.67 / 2.89 / 5.95 / 9.01 / 10.03 / 11.05 / 12.06 / 13.08 / 14.08 / 18.08
Medium: -3.22 / -0.67 / 2.89 / 5.95 / 9.01 / 10.03 / 11.05 / 12.06 / 13.08 / 14.08 / 18.08
Fine: -3.22 / -0.67 / 2.89 / 5.95 / 9.01 / 10.03 / 11.05 / 12.06 / 13.08 / 14.08 / 18.08

Numerical Method

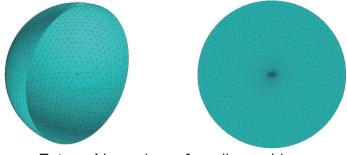
■ Solver information

Solver name	TAS		
Governing Eq.	Compressible NS Eq.		
Discretization	Cell-vertex finite volume		
Inviscid flux	HLLEW + U-MUSCL		
Time integration	LU-SGS		
Turbulence model	Spalart-Allmaras		

☐ Grid generation method

Grid generation tool	MEGG3D provided by JAXA	
Туре	Unstructured mesh	

TAS code used in this paper is an original MPI version, so hexa mesh cannot be used. →Computational grid has been generated without hexa mesh.

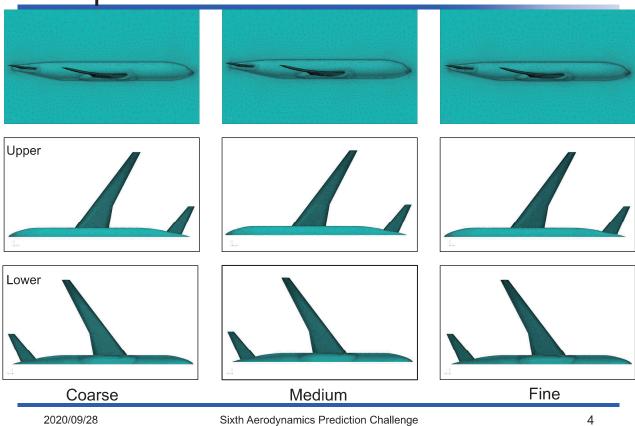

2020/09/28

Sixth Aerodynamics Prediction Challenge

Computational Grids

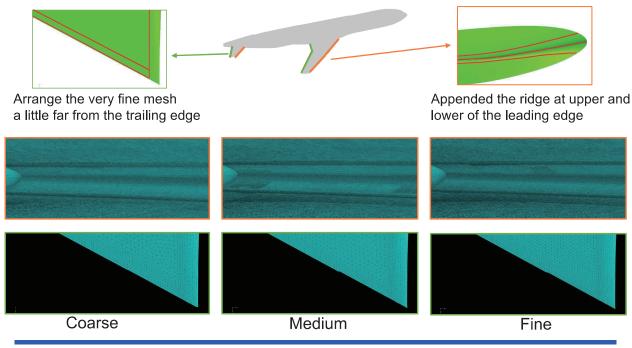
□ Grid information

	x 1.	15 x	1.15
	Coarse	Medium	Fine
Number of elements	45,105,223	64,636,349	92,372,151
Number of nodes	16,275,869	23,581,655	34,490,859
Number of prism layer	39	45	52
Growth rate of prism layer	1.233	1.200	1.172
max y+	~1.61	~1.41	~1.25



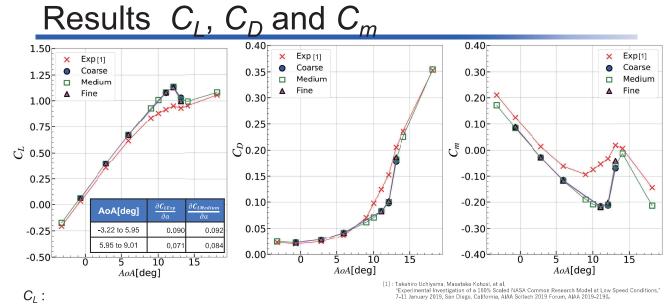
External boundary of medium grid

2020/09/28


Sixth Aerodynamics Prediction Challenge

Computational Grids

Computational Grids

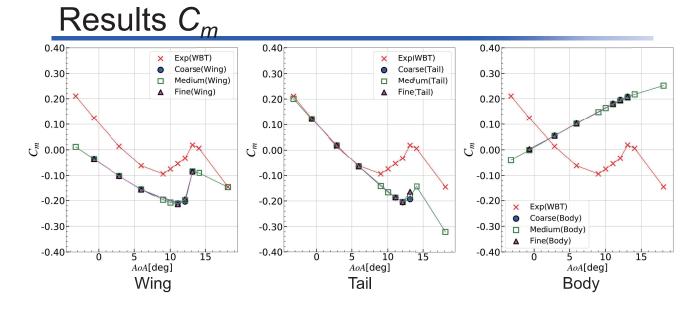

☐ Feature of the surface grid to improve the quality

2020/09/28

Sixth Aerodynamics Prediction Challenge

5

- · There are a little difference between Coarse, Medium and Fine at 13.08deg.
- The experimental result is changing the slope of lift curve after 5.95deg, but TAS is increased linearly.
- AoA at C_{Lmax} of TAS is in good agreement with the experiment. However, TAS estimate C_{Lmax} 0.18 larger than the experiment.

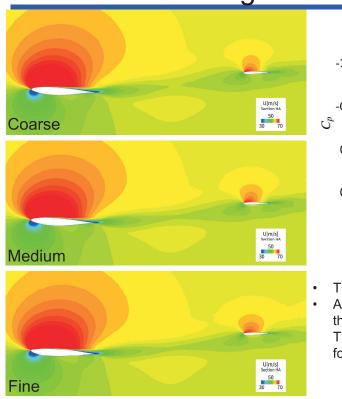

 C_D :

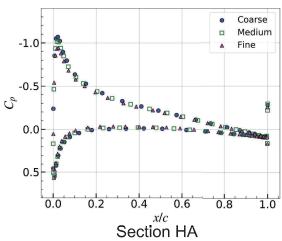
• TAS estimate \sim 50 drag count large to 5.95deg.

C_m :

· Each mesh could capture the similar trends of the experiment, but the value is estimated small.

2020/09/28 Sixth Aerodynamics Prediction Challenge 6

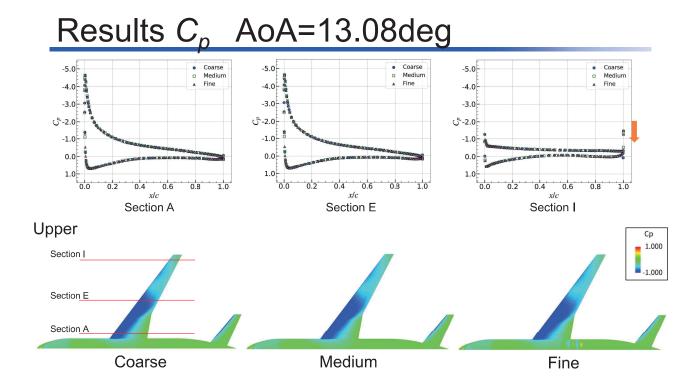



- Differences between grids appeared in 13.08deg at the tail.
- If C_m in the tail increases in the pitch up direction, it will be close to the experimental result.

2020/09/28

Sixth Aerodynamics Prediction Challenge

Results 13.08deg U-velocity at Section HA

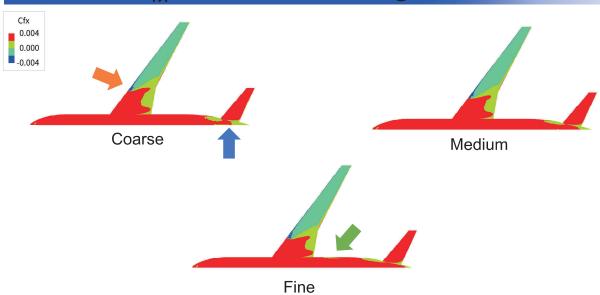

- The wake distribution is different by mesh quality.
- As the mesh is finer, the wake velocity of the wing that hits the tail becomes low.

 Therefore, tendency of aerodynamic coefficient for fine mesh is different from coarse mesh.

2020/09/28

Sixth Aerodynamics Prediction Challenge

8


- C_p is almost matched between grids at the wing except for trailing edge.
- The change in the C_p around the trailing edge becomes smaller by increasing the grid points.

2020/09/28

Sixth Aerodynamics Prediction Challenge

9

- The differences between mesh at wing could see around kink.
- · As the grid becomes finer, the attached flow area is large at the rear of the body.
- Only in fine mesh, the separation area on the body surface is appeared.
 (However, the difference from around this area is less than 0.0001.)

2020/09/28

Sixth Aerodynamics Prediction Challenge

10

Conclusion

□ Conducted the CFD simulation for NASA-CRM using TAS solver at the low-speed condition.

1. Lift coefficient

- The following two points were confirmed that TAS is matched with wind tunnel tests.
 - ✓ Lift slope
 - ✓ Angle of attack at C_{Lmax}
- C_{Lmax} is overestimated.

2. Moment coefficient

- · TAS tend to estimate small in all angle of attack.
- It can capture the pitch up trend after separation.

3. Future task

 Generate the mesh which is denser for spatial direction to improve the aerodynamic coefficient.

2020/09/28

Sixth Aerodynamics Prediction Challenge

12