Sixth Aerodynamics Prediction Challenge (APC-6) 2020/09/28, Online

1A15

Aerodynamic prediction of NASA-CRM cruising configuration at low speed and high angle of attack using UTCart

OHibiki Yoshinaga, Keisuke Sugaya, Taro Imamura (The University of Tokyo)

Objective

- Low-speed and high-AoA flow predictions for NASA-CRM cruising configuration
 steady flow simulation + unsteady flow simulation
- UTCart (The University of Tokyo Cartesian grid based automatic flow solver)
 - Unstructured hierarchical Cartesian grid
 - Automatic grid generation
 - The immersed boundary method with a wall function (1)

1) Tamaki, and Imamura, AIAA J., Vol 56, 2018.

Computational Condition

NASA CRM cruising configuration

	Steady	Unsteady	
Reynolds number $(C_{ref} = 275.8 \text{ [in.]})$	1.06×10^6		
Mach number	0.168		
Reference temperature [K]	310		
Angle of attack [deg]	-3.22~18.08	13.08	

Numerical Methods

	Steady	Unsteady	
Governing Equation	RANS	DDES ⁽¹⁾	
Turbulence Model	SA-noft2-R ⁽²⁾		
Inviscid Flux	$SLAU+MUSCL(\kappa=1/3)$		
Viscous Flux	2 nd order central difference		
Time Integration	MFGS(Local Time Stepping)	MFGS(Constant dt)	
Wall Boundary Condition	IB+SA wall model		
Distance between IP and wall (d_{IP})	$2\Delta x$		

- 1) 玉置 et al. ,第49期 年会講演会講演集, 2018
- 2) Dacles-Mariani et al, AIAA J, 1995.

3

Time Integration(MFGS)

- Local time stepping
 - Local courant number: 100
- Constant dt
 - Δt : 3 [-] (about 550 steps for a uniform flow to flow through the MAC)
 - Total steps: 60,000 (Sub iterations: 5)

5

Grid Settings

	Steady		Unsteady	BOXFUN
	w/o sting	w/ sting		(reference)
Total cell number	68.5×10^{6}	81.4×10^6	55.2×10^6	42.5×10^6
Domain size [in.]	2.76×10^4	2.76×10^4	2.76×10^4	2.76×10^4
Minimum grid size [in.]	0.421	0.421	0.421	3.37
RB grid size [in.]	3.37	3.37	3.37	3.37
MAC / Minimum grid size (Real size scale)	655	655	655	81.8

Grid Settings

 Refinement Box for steady flow based on BOXFUN

7

Grid Settings

- Refinement Boxes for unsteady flow
 - Total cells reduce from 69M to 55M

Steady simulation

9

α -sweep (steady flow)

- Good agreement between the results of UTCart and experiment at low AoA
 - Sting has effects on the wind tunnel experiment

10

α -sweep (steady flow)

- Larger CL and smaller CM of UTCart than those of experiment at high AoA
 - separation occurs on the wingtip and trailing edge from 9.01 [deg] in the wind tunnel experiment. (1)

11

Unsteady simulation

CL, CD, CM (unsteady flow)

• The results in unsteady simulation are closer to the ones in experiment than steady simulation.

13.08	Experiment	Steady		Unsteady
[deg]		w/o sting	w/ sting	
CL	0.9305	1.0444	1.0196	0.9789
(error)	(0)	(11×10^{-2})	(9.0×10^{-2})	(4.8×10^{-2})
CD	0.2053	0.1103	0.1051	0.1240
(error)	(0)	(9.4×10^{-2})	(10×10^{-2})	(8.1×10^{-2})
СМ	0.0186	-0.0844	-0.0262	-0.0396
(error)	(0)	(10×10^{-2})	(4.5×10^{-2})	(5.8×10^{-2})

$$error := |CX_{experiment} - CX|$$

13

Wake from main wing

• Separation occurs in unsteady simulation

Density Gradient Magunitude at y = 400[in.]

Isosurface of q-criterion = 10^{-6} , colored by density gradient.

Unsteady Forces Spectrum

- Lift coefficient of main and tail wing
 - No noteworthy periodicity can be observed in this simulation

15

Conclusion

- Steady / Unsteady flow are simulated by UTCart
 - The trend of each aerodynamic coefficients is consistent with the reference experimental data at low angles of attack.
 - The results in unsteady simulation are closer to the experimental results at high angle of attack.