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Background/Objectives

BThese days, Lattice Boltzmann Method (LBM) has
achieved a significant progress in turbulent flow
simulations.

m PowerFlow, Xflow, LaBS, LAVA, OpenlLB, etc

BCharacteristics of Lattice Boltzmann Method:

B No non-linear term in governing equation

m Asymptotic to Navier-Stokes equation (Kn<<1, M<<1)

B Weak compression

B Explicit scheme only, but CFL=1

W Easy to program/parallelize, Compact stencils, Fast computation

mResearch objectives:

Hpa

B To realize “One Day Solution” of unsteady flow simulation.
B To investigate the capability of present approach through APC-6.
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Lattice Boltzmann Method

W | attice Boltzmann equation fea

fi  :Distribution function

: Equilibrium function
m Collision: fi(r,t) = fi(r,t) — w;(fi(r,t) — [;79(x,t) ) | ¢ :Particle velocity

. * w; : Relaxation frequency
B Stream:  fi(r + c;At, t + At) = f;*(r, t) © Relaxation time

coefficient

B Macroscopic variables

B density: p=2ifi
B momentum: pu = Y Cif;

B Cumulant LBM is used for the collision operator[1].

e

gatB+y

9sgosbos)

B Cumulant: g, = e~(@F+n) I{F(Ex, 2y, B}, . o, (@By=0,12)
SxXSy=zZ=

m Collision of cumulant: c;g, = capy — wagy (capy — coity)

B This approach is the implicit LES.
[1] Geier, M., et al., Comput. Math. with Appl.(2015)
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Building-Cube Method

) o o ] Cube layout
B Computational domain is divided into “Cubes”. | onacoarse grid

B Each cube has a uniform-spacing Cartesian
grid, “Cells”.

W Grid information (Custom Grid)

Grid Coarse Fine
Cube 65,899 219,948
Cell 83 83
Total points 33,740,288 112,613,376 on a coarse grid
Ax, i 7.81 x 1073L 391 x 1073L
Dimain size | 64L X 64L X 64L | 64L X 64L X 64L

e
Wall Boundary Treatment

® Following bounce-back boundary condition is used[2].

fﬁ A) = —fi —qijk
t:] xyZ(t‘:V t) qijk +_ 1 l]kt' Qijk 1
fijre = fijke — 6w (i + jvy, + kwy)

fifiee = (1= Qiji) fijrexyze + Qijicfijice+icAt) v+ jeat)@+keAt) E+A0)

!

[k (e+1cAt) (y+7cAD) (z+RcAD) (E+AL)

Slip wall velocity : (u,, vy, wy,)

[2] Geier, M., et al., Comput. Math. with Appl.(2015)
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B Slip wall velocity is introduced at wall boundary[3].

B Eddy viscosity is introduced near wall boundary to reproduce
realistic flow near wall boundary[3].

prp, Urp m Slip wall velocity
/ Ftlp * dip = aAxpyy (@ =1.75)
/ * Pwp = Prp

+ _ +
* Yip = FSpalding(ulP) - Ug
aou

+ + + o+ 7
* ysp = max(100,y;p) = Ysp, usp, dsp, Utgp n

— — ou
Uth = (U, Vwr Wy) = Utgp o

., Lau

Utsp'%

|SP

SP

*Ugp
s

y . O ® Eddy viscosity
AL " * Ve = Kudpf

(i (G =d 2(O<d<d)
p=\minl 2 =05a," =¢=tr

[3] Maeyama, H., et al., AIAA AVIATION Forum (2020)
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Validation of Current Wall Model

BOblique periodic turbulent channel flow was computed
at Re, = 180,2000, and 5200.
MO = atan(0.5) =~ 27°,M, = 0.2, Ax =1/ 16

Re, = 180 B | || Re; =5200 ;"}‘

30

—Spalding
25 SRe=180
20 +Ret=2000

+-Ret=5200

0.1 1 10 100 1000 10000
v+
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Aerodynamic Coefficients

mFlow Conditions (APC-6 Conditions)
B Mach number M = 0.168
B Reynolds number Re = 1.06 x 10
mAngle of attack a = 11.05deg

£0 = Alphe CL- Alpha
0.4 } } 12
—~Exp —o-Exp o
® FaSTAR tead
® FaSTAR_unsteady / ° -unsteady ﬁ/N
(0 I 0.8 || ® LBM_coarse .
® LBM_coarse
e LBM_fine
e LBM_fine / .
o °
J 02 // g 04 //
0.1 / 0 /p’
O —C"]
. -0.4
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afdeg]
aldeg]

e )

LBM_coarse

LBM_fine

FaSTAR
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Time-Averaged Flow
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Summary/Conclusion

m\Wall model was implemented in the current LBM framework.
B Slip wall velocity and eddy viscosity were introduced near wall

boundary.

®m\WMLES was conducted for oblique turbulent channel flow and its
results showed reasonable agreement with law of the wall.

m\WMLES around NASA-CRM was conducted.

B Separated flow around complex geometry was captured stably.

W Separated region differed from FaSTAR.

B In the coarse grid analysis, CL was underestimated compared to CL of

the experimental data and FaSTAR.

B In the fine grid analysis, CD was overestimated compared to CD of the

experimental data and FaSTAR.
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