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A network consisting of multiple drones is considered to be a more efficient way to explore
large areas. In this study, we use reinforcement learning for generating a ”flexible” network,
because the drone network should flexibly distribute drones in a three-dimensional space
according to exploring environment, network purpose, or the number of drones. In order to
reduce the time required for training, two learning procedures are explained and applied to
the motion of drones in simulations.

強化学習を用いた３次元観測ドローンネットワークの構築
複数のドローンで構成されるネットワークは、広いエリアを探索するためのより効率的な方
法であると考えられている。ドローンネットワークは、環境、目的、またはドローンの数に
応じて、各ドローンの位置を 3次元で調整する必要があるため、本研究では強化学習を利用
して「柔軟な」ネットワークを生成する。学習に必要な時間を短縮するために、２つの学習
手順を説明し、シミュレーションでドローンの動きに適用する。

1 Introduction

On July 30, 2020, the first mission operat-
ing a drone for Mars exploration has been
launched by NASA. The primary objective
of the exploration mission is to gather in-
formation about astrobiology for much wider
area. If this mission is successful, the effec-
tiveness of drone exploration is also approved;
done can move extremely fast compared with
rovers (typically 5 cm/s), and terrain condi-
tions (roughness, looseness) are meaningless

for drones.

Furthermore, in future missions, drone net-
work consisting of multiple drones may be
considered as a promising exploration system.
From drones’ three-dimensional mobility, the
network enables wider exploration and detail
observation from low altitude. Furthermore,
simply increasing the number of drones is ef-
fective to achieve both enlarging observation
area and repeated observation of interesting
points. In addition, multiple drones can in-
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crease redundancy or flexibility for the ex-
ploration network in case of a drone’s ma-
chine trouble or leaving for battery charge.
Thus, efficient control strategy is necessary
for a drone network.

In previous studies on the drone swarm sys-
tems for ground observations, the drones are
supposed to be in a certain altitude[1, 2, 3].
However, as denoted before, drones can move
in any direction and also hover. The mobility
is quite important for observation or surveil-
lant task. There are also few studies dealing
with the change of the drone number in a net-
work due to malfunctions or battery charges.

The purpose of this study is to construct
a more efficient and flexible observation net-
work by considering drones’ altitude transi-
tions and the number change of drones. In
this study, we aim to allocate drones so that
the observation area of each drone does not
overlap and the unobserved area is smaller as
much as possible.

Applying reinforcement learning on the
problems described above in a normal way,
the computation time for training would be
huge because the numbers of drones and seg-
mented positions are both large. Thus, two
learning procedures are explained and ap-
plied to the motion of drones in simulations.

2 Q-Learning

In planetary explorations, global positioning
systems (such as GPS) cannot be utilized.
In addition, computers and other equipments
that can be loaded on a drone are limited in
terms of weight and size, and their comput-

ing ability is also limited. Therefore, in this
research, we use reinforcement learning as an
approach, which can reduce the online calcu-
lation load by learning in advance.
Reinforcement learning is a framework for

learning better behaviors of the agents (in
this study, drones) from the interactions with
the environments.[4] Consider a certain dis-
crete time step t. The drone performs an ac-
tion at at a state st, which results in a new
state st+1 and a reward rt+1 returned from
the environment. Based on the above pro-
cess, selection probability of the action at is
reinforced so that the total reward will in-
crease.
Q-learning is a typical one of reinforcement

learning, and the formula for updating the ac-
tion value function in Q-learning is as follows:

Q(st, at)←
Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

where α is the learning rate (step size pa-
rameter) and γ is the discount rate (weight
to future rewards).
For each state and action pair, a value is

assigned. The value of one step ago is re-
placed by using a specified fixed percentage
with the reward obtained and the value of the
next state action pair.
In this study, multi-agent reinforcement

learning process is applied to a group of
drones[5].

3 Time reduction method

If Q-learning is applied in discrete state
space, the number of states becomes too large
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and the learning becomes very slow due to the
following reason. For precise position control
of drones, state space should be divided into
a large number of small subspaces. For exam-
ple, if the possible positions of each drone are
discretized into 10×10×10 grid form drones,
the total number of combination of drones’
positions in that case is (10 × 10 × 10)m.
The computational complexity dramatically
increases according to the numbers of sub-
spaces and drones, and thus their increases
make the learning process unrealistic. (this
is called “the curse of dimensionality”.)
Therefore, consider the following two

methods – the coordinate-based method and
the relative position-based method – to im-
prove the learning process of a multi-drone
network. The methods are applicable to dif-
ferent circumstances and purposes of net-
works.
For the coordinate-based method, s of

Q(s, a) is the three-dimensional coordinates
of a drone. On the other hand, the action
value function table is separately set for each
drone; Q1, Q2, · · · , Qm　 (m is the number of
drones). This is a method called independent
Q-learning[5]. In this way, the state quantity
in the previous example can be reduced from
(10× 10× 10)m to (10× 10× 10)×m.
In the relative position-based method, two

types of spaces are defined: a training space
and an action (real) space. The training
space is divided into equal-sized subspaces
through a standard procedure, but the num-
ber of subspaces should be relatively small to
reduce training time. On the other hand, the
action space is divided into the same number
of subspaces with the training space, but the

Figure 1: Representation of the drones po-
sition in a training space (without learning
drone)

Figure 2: 3 × 3 grid divisions for the yellow
drone in an action space

sizes of subspaces are not equal. The sizes are
defined according to relative positions with
neighbor drones in real space. For example,
Fig.1 indicates a schematic diagram showing
one or two drones placed in 3×3 subspaces in
two dimensions for simplicity. In the figure,
a drone learning its motion is supposed to be
in the center grid, but it is not depicted for
better visibility. In the training space, each
drone learns better motion according to its
position relative to the learning drone. On
the other hand, a real space is virtually di-
vided for each drone according to the rela-
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tive positions with neighbors. For example,
Fig.2 shows the subspaces divided into 3× 3
in two dimensions for the yellow drone. The
action space is discretized according to the
relative positions of vicinity drones into the
same number of subspaces with the training
space. Then, the motion of each drone is de-
cided according to the training results. Al-
though Figs. 1 and 2 are illustrations in two
dimensions, the training and the action space
divisions are conducted in three dimensions.
Note, since the training space is divided into
relatively a small number of subspaces, the
most time-consuming training process can be
shortened.

4 Simulation

First, the simulation conditions of the
coordinate-based learning system is described
as follows. The number of drones is selected
as 3, 5, and 10 drones. The learning rate
α is set to 0.04 and the discount rate γ is
set to 0.9. The possible states of each drone
are set as 10 × 10 × 10, and the possible ac-

Figure 3: Simulation result with 3 drones
(coordinate-based method)

Figure 4: Simulation result with 5 drones
(coordinate-based method)

tions are seven; up, down, left, right, front,
back, and wait. As an action strategy, the
epsilon greedy action selection[4] is used and
the value of ϵ = 0.1. This action strategy is
continued even after the learning process is
matured to avoid local optimal solutions.
On the other hand, the reward of network

systems should be decided according to the
desired networks, which can be specified ac-
cording to the purpose of network and the
environment. Thus, in this paper, we simply
consider a drone network to be apart from
each other as farther as possible. That is,
the reward increases as the distance between
the drones increases.
The results of the coordinate-based simu-

lation and the reward transition are shown
in Fig.3-5 according to drone numbers. Each
figure shows results of executed 10 episode.
The horizontal axis is the number of itera-
tions, and the vertical axis is the reward cal-
culated from the drone position.

reward = log

( ∏
i≤m,j<i

rij + 0.01

)
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Figure 5: Simulation result with 10 drones
(coordinate-based method)

where m is the number of drones, and rij is
a distance between drone i and drone j when
each axial length of real space is set to 10.
The increase in rewards indicates that learn-
ing is being performed properly. In points of
the sharp decreases in rewards, the number
of drones is relatively large compared to the
space where the drones can act, so the dis-
tance between the drones is very close.

Figure 6: Simulation result (relative position-
based method)

Next, the relative position-based learning
method is applied to the same problem. The
number of drones is set as three, and the
training space and also action space are di-

vided into 3 × 3 × 3 subspaces. Figure 6
shows the simulation results of the relative
position-based learning system; the horizon-
tal axis is the number of iterations, and the
vertical axis is the reward calculated from the
drone position in the real space. In this fig-
ure, the results of executed 100 episodes are
drawn. In the simulation each drone moves
along the trained direction but the moving
distance is set as 0.1 in one iteration to avoid
rapid motion due to the small number of vir-
tually divided subspaces. This figure indi-
cates, although many iteration numbers are
required, the final rewards are almost same
as Fig.3. It should be noted again that the
training cost can be reduced due to a less
number of divisions in the training space.

5 Conclusion

This paper has discussed about efficient
and flexible observation network by drones.
Drones can change the altitude and hover,
and the number of drones may be changed in
observation missions. Thus, Q-learning is one
of promising techniques to generate and keep
a flexible network, but reducing the training
time for complicated network is requested.
Thus, two methods (i.e., coordinate-based
method and relative position based method)
are explained and their performances are ex-
amined in simulations.
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