非構造格子 CFD ソルバーによる内部対流冷却翼列の流体・熱伝導連成数値計算

吉新哲也, 佐々木大輔, 中橋和博 (東北大学大学院 工学研究科 航空宇宙工学専攻)

Conjugate Heat Transfer Simulation of an Internally Cooled Turbine Vane Using Unstructured-Mesh CFD Solver

by

Tetsuya YOSHIARA, Daisuke SASAKI, Kazuhiro NAKAHASHI

ABSTRACT

Conjugate heat transfer method was implemented in the unstructured-mesh CFD solver to predict the thermal loads of the two- and threedimensional cooled turbine blades. In this simulation, the fluid domain and the solid domain are solved simultaneously satisfying the equality of the heat flux and wall temperature on the boundary of the fluid and solid. The results of the surface temperature and the external heat transfer coefficient distributions are in close agreement with the experimental data especially in the two-dimensional calculation.

1. 緒言

高効率な航空用エンジンの開発が求められる中で、特に 熱効率を向上させるにはエンジン内部最高温度となるター ビン入口温度を上昇させる必要がある. タービン入口温度 は,耐熱材料の開発や冷却技術の向上によって上昇してき たが, それに伴い高温, 高圧, 高荷重の過酷な状況がより 厳しくなるため、タービン部材の損傷や劣化を事前に予測 することが重要となってくる. 損傷や劣化を予測するには 部材の温度分布を正確に評価する必要があり、そのために はタービン翼周りの流れとタービン部材の固体熱伝導を同 時に計算する流体・熱伝導連成数値計算(CHT: Conjugate Heat Transfer)⁽¹⁾が不可欠である.従来の方法では,流体計 算を行ってから熱伝達率を予測し、その熱伝達率を固体領 域の境界条件として与えて固体熱伝導計算が行われていた (1).熱伝達率の予測は経験則に基づいて行われていたため 不確定要素を含んでおり、新規形状や複雑な形状において 正確に予測することは非常に困難である. それに対して CHT では熱伝達率は境界条件として設定するのではなく, 全体の計算の解として出てくるため、上記のような問題を 避けることができる.また、冷却機構も考慮した複雑なタ ービン翼形状に対しては、格子生成の容易さを利点にもつ 非構造格子での解析が適当であると考えられる. 東北大学 で開発された非構造格子 CFD ソルバーTAS-code(Tohoku university Aerodynamic Simulation code)⁽²⁾は, 実際の現場で 航空機周りの流体解析や設計に用いられており、その信頼 性は高い.本研究の目的は TAS-code に流体・熱伝導連成 計算手法を組み込み、タービン部材の正確な温度解析が可 能なコードを構築することである. 今回は比較的単純な形 状の2次元および3次元のタービン静翼の温度解析を行い, 計算手法の妥当性を検証する.

2. 数値計算法

2. 1 流体計算

流体計算には 3 次元非構造格子 CFD ソルバーTAS-code を用いる.支配方程式は圧縮性 Navier-Stokes 方程式で,有 限体積法のセル節点法によって離散化する.流束評価は HLLEW 法,時間積分は LU-SGS 法,乱流モデルは S-A

(Spalart-Allmaras) モデル⁽³⁾, SST モデル⁽⁴⁾を用いる.計算 格子は物体近傍に四角形格子または六面体格子,それ以外 の部分に三角形格子またはプリズム格子を用いるハイブリ ッド非構造格子である.

2. 2 固体熱伝導計算

固体領域の支配方程式は熱伝導方程式であり,流体領域 と同じ非構造格子を用いて同様な離散化を行っている.た だし,2次元計算での時間積分に関しては Euler 陽解法を用 いている.

2. 3 流体·熱伝導連成計算手法

流体領域と固体領域の境界では熱流束と温度が等しいという条件が満たされる.図1は流体と固体の境界の格子を表しており、流体領域の温度 T_F 、境界の温度 T_W (未知数)、固体領域の温度 T_S を図のように定義する. L_F 、 L_S はそれぞれ、 T_F の定義点と境界との垂直距離、 T_S の定義点と境界との垂直距離を表している.

図1 流体・固体境界の格子

ここで流体・境界間の熱流束 q_Fと,固体・境界間の熱流束 q_Sが等しいことから以下の式が導ける.

$$q = -k_F \frac{T_F - T_W}{L_F} = -k_S \frac{T_W - T_S}{L_S}$$
(1)

 k_F , k_S はそれぞれ流体,固体の熱伝導率である.式(1)を未 知数 T_W について解くと式(2)のように境界の温度が求まり, この温度を流体領域,固体領域の境界条件として与えるこ とで,境界の温度が一致するという条件が満たされる.な お,流体領域への温度の受け渡しは,完全気体の状態方程 式により,密度を通して与えている.

$$T_{W} = \frac{(k_{S} / k_{F})(L_{F} / L_{S})T_{S} + T_{F}}{1 + (k_{S} / k_{F})(L_{F} / L_{S})}$$
(2)

式 (2) における流体の熱伝導率 k_F は以下の式で与えられる. μ は粘性係数, Pr はプラントル数で 0.71, C_p は定圧比熱である.

$$k_F = \frac{\mu}{\Pr} C_p \tag{3}$$

式(3)における粘性係数 μ のうち, 層流粘性係数 μ_l は次の Sutherland 式から求められる.

$$\frac{\mu_l}{\mu_0} = \left(\frac{T}{T_0}\right)^{3/2} \frac{T_0 + S}{T + S}$$
(4)

ただし, $\mu_0 = 1.79 \times 10^{-5}$ [kg/m・s], $T_0 = 288.15$ [K], S = 110.4 [K] である.

3. 計算対象と計算条件

3.1 2次元翼列

計算対象には Hylton らにより実験⁽⁵⁾が行われた内部対流 冷却機構をもつ高圧タービン静翼 C3X, Mark II を用いる. 計算格子を図 2, 3 に,計算条件を表 1 に示す.2 次元非構 造格子生成には Dot Editor⁽⁶⁾を使用した.流体領域と固体領 域の境界においては格子点が完全に一致するようにしてい る.流体領域は境界層を捉えるためのハイブリッド格子, 固体領域は三角形格子のみである.

図 2 計算格子 (C3X 2D)

図3 計算格子(Mark II_2D)

流入境界は全圧,全温,流入角を与え,流出境界では静 圧を与える.出口静圧は計算条件の出口 Mach 数と等エン トロピー関係式から計算される値を用いる.周方向は周期 境界条件である.

固体領域の10個の冷却孔は、管内乱流と仮定している. 管内乱流の Nusselt 数は経験式である式(5)で与えられる.

$$Nu_D = 0.022Cr \,\mathrm{Pr}^{0.5} \,\mathrm{Re}_D^{0.8} \tag{5}$$

式(5)の Cr は補正係数, Pr はプラントル数, Re_D は流路 直径を用いて定められる Reynolds 数である.式(5)の Nusselt 数から熱伝達率を求め,それと冷却流温度⁽⁵⁾を固体 領域の境界条件として与えて熱伝導計算を行う.

タービン部材は Stainless steel (ASTM Type 310) であり, 熱伝導係数は以下の式で与えられる.

$$k_s = 0.0182 T + 6.13 [W/m/K]$$

(6)

表1計算条件		
	C3X	Mark II
テストコード	4311	5411
入口全圧 [MPa]	0.245	0.337
入口全温 [K]	802	788
出口静圧 [MPa]	0.143	0.70
出口 Mach 数	0.91	1.04
Reynolds 数	3.07×10^{6}	3.30×10 ⁶
流入角[deg]	0	0
Solidity	1.24	1.05
格子点数 (流体) (固体)	$51000 \\ 14000$	$46000 \\ 12000$

3. 2 3次元翼列

3 次元の計算対象は C3X の 2 次元形状を高さ方向に押し 出した形状であり、これは実験(5)を模擬したものである.3 次元非構造格子生成には MEGG3D⁽⁷⁾を用いた. 図4に3次 元の計算格子を示す. 高さ方向への押し出しにより,2次 元格子における物体近傍の四角形格子は六面体格子,物体 近傍以外の三角形格子はプリズム格子になる.格子点数は, 流体 220 万点, 固体 50 万点, 冷却流路は 1 流路あたり 7.5 万点である.3次元計算では2次元において式(5)によって 仮定した管内冷却流の流体計算も行い、冷却流路と翼固体 の境界は連成計算手法を適用する. 流入条件については全 圧, 全温の実験データがなく, 一通りに定めることができ ないという問題がある. ここでは与えられた各孔での平均 温度, Reynolds 数, 流出の静圧を利用して, 流入から流出 まで全温,静温,静圧,マッハ数が線形に変化し,全圧は 変化しないという仮定を基に、流入での全圧、全温の値を 決定している. 流出境界では実験条件に合わせて静圧を大 気圧に固定している. 主流側の条件は表 1 の条件と同じで あるが、側壁は滑りなし断熱壁として計算する.

図4 計算格子 (C3X_3D)

4. 計算結果

4.1 2次元翼列

図 5(a),図 6(a)は C3X, Mark II の Mach 数分布の可視化図 である.これらの計算結果は,連成計算を行っていない場 合,すなわち翼を断熱壁と仮定した場合の計算結果とほぼ 同じ結果であることを確認している.また,図 5(b),図 6(b)は C3X, Mark II の翼表面圧力分布の計算結果を実験値 とともに示したものであり,どちらも実験値と良く一致し ていることから連成計算においても流体計算が正しく行わ れていると判断できる.

図 7(a), 図 8(a)は C3X, Mark II の温度分布の可視化図で ある. 図 7(b), 図 8(b)は翼表面温度分布, 図 7(c), 図 8(c) は熱伝達率分布の計算結果を実験値とともにプロットした ものである. C3X, Mark II の両計算対象に対して, S-A, SST 乱流モデルともに表面温度分布については実験値の全 体的な傾向は捉えられている. しかし, 背側前半の境界層 乱流遷移が起こる部分では正しく傾向を捉えられていない. ここで, S-A 乱流モデルでの計算において, 遷移が起こる とされる部分に遷移点を指定して乱流粘性係数の発達を抑 えて計算を行った結果が図の灰色の曲線であり,実験値と 良く一致することが確認できる. 遷移点の位置は, 翼前縁 からの無次元軸方向距離で C3X は 0.38, Mark II は 0.43 と した. 熱伝達率も温度と同様な傾向を示しているが, 背側 の前縁付近では SST モデルが S-A モデル比べて実験値の傾 向を捉えている.

図 5 Mach 数分布,表面圧力分布(C3X_2D)

(a) 温度分布 [K]

図 8 温度分布,熱伝達率分布(Mark II_2D)

4. 2 3次元計算

3 次元計算は全て S-A 乱流モデル(全面乱流)の結果で ある.図 9(a),(b)はそれぞれ C3X の 50%高さにおける Mach 数分布と翼表面圧力分布を示している.圧力分布に ついては実験値と良く一致していることに加え,背側後縁 付近では 2 次元の結果よりも実験値に近い値であり傾向を 捉えている.これは 3 次元計算において側壁で発達してき た境界層が 50%高さまで影響したものと考えられる.

図 10(a)に 50%高さにおける温度分布の可視化図,(b)に 翼表面温度分布,(c)に熱伝達率分布を示す.表面温度分布 と熱伝達率分布は2次元でS-Aモデルにおいて遷移点を指 定した場合の計算結果とともにプロットしている.熱伝達 率分布の傾向は捉えているが,温度分布については全体的 に高い値となっており,予測には至っていない.可視化図 からもわかるが,冷却孔による影響があまり見られない. 原因としては流入境界の不確定性に加えて,発達した管内 乱流を模擬できていないことにより管内の熱伝達率が小さ く見積もられてしまっていることが考えられる.図11は翼 表面の温度分布の可視化図であり,冷却流は図の上から下 へ流れている.冷却流が翼を通過する際に温度が上昇し, その影響により翼表面温度の3次元的な分布が得られてい ることが確認できる.

図 9 Mach 数分布,表面圧力分布(C3X_3D, 50%高さ)

(a) 温度分布 [K]

(a) Pressure side

(b) Suction side

図 11 翼固体温度分布(C3X_3D)

5. 結論

非構造格子 CFD ソルバーTAS-code に流体・熱伝導連成 計算手法を組み込み,検証計算として比較的単純な形状の タービン静翼の連成計算を行った.

2 次元計算においては,得られた翼表面温度分布と熱伝 達率分布を実験値と比較して,遷移部分以外の傾向を捉え ていることを確認した.温度分布,熱伝達率を正確に予測 するには適切なモデルにより遷移を捉える必要があること がわかる.

3 次元計算においては流体計算が正しく行われていることは確認できたが,連成計算による温度解析については温度分布,熱伝達率分布ともに予測には至っていない.2 次元計算との大きな違いは冷却流路の計算も行っている部分であり,今後冷却流の検証も必要である.

参考文献

- Bohn, D, Krüger, U, and Kusterer, K, "Conjugate Heat Transfer: An Advanced Computational Method for the cooling design of modern gas turbine blades and vanes," Heat Transfer in Gas Turbines, eds. B. Sundén and M. Faghri, pp. 57-108, WIT Press, Southampton, UK, 2001.
- Nakahashi, K., et al. "Some Challenges of Realistic Flow Simulations by Unstructured Grid CFD," International Journal for Numerical Method in Fluids, 2003, Vol. 43, pp. 769-783, 2003.
- Spalart, P. R. and Allmaras, S. R., "A One-Equation Turbulence Model for Aerodynamic Flows," AIAA Paper 92-0439, Jan. 1992.
- Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," *AIAA Journal*, Vo. 32, No. 8, 1994, pp. 1598-1605.
- Hylton, L. D., Mihelc, M. S., Turner, E. R., Nealy, D. A., and York, R. E., "Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes," NASA Paper No. CR-168015, 1983.
- 6) 石田 崇, "複雑形状に対する格子生成法の研究,"東北 大学大学院工学研究科 平成19年度修士論文.
- Ito, Y. and Nakahashi, K., "Improvements in the Reliability and Quality of Unstructured Hybrid Mesh Generation," *International Journal for Numerical Methods in Fluids*, Vol. 45, Issue 1, May 2004, pp. 79-108.