ハイブリッドロケット用 LT 燃料の長時間保管を想定した FEM 解析

 ○大場 香輝(福岡大学・学),川端 洋(福岡大学),和田 豊(千葉工業大学), 加藤 信治(株式会社型善),堀 恵一(宇宙航空研究開発機構)

FEM analysis assuming long-time storage of LT fuel for hybrid rockets

Oba Kouki(Fukuoka University Student), Yo Kawabata(Fukuoka University), Yutaka Wada(Chiba Institute of Technology), Nobuji Kato(Katazen Corporation), Keiichi Hori(Japan Aerospace Exploration Agency)

Abstract

In the structural analysis of this study, the data obtained by the tensile test is used. LT fuel was stored in an environment of 40 °C for about two months, and the amount of deformation was measured. The purpose is to improve the analysis accuracy by simulating long-time storage by adding the measured deformation value. However, by approximating the relaxation shear modulus of 10⁶s or less using a master curve and extending it along an approximate straight line, it was found that accurate analysis for a long time could not be performed. As a countermeasure method, accurate analysis for a long time can be improved by changing the relaxation shear modulus.

1. 緒言

本研究では、ハイブリッドロケットの燃料で ある、低融点熱可塑樹脂(Low melting point thermoplastics:以下 LT)燃料に着目した.ハイブ リッドロケットは、一般的に固体燃料と液体酸 化剤を用いて打ち上げるロケットである.欠点 としては低燃料後退速度が問題であり、補うた めに燃料表面積を増大させるため、体積充填効 率が低くなることが挙げられる.そのための改 善策として出てきたものがパラフィン(WAX) 燃料であり、文献1からわかるように HTPB 燃 料に比べて 2~3 の非常に高い燃料後退速度であ る.しかし、このパラフィン燃料は固く脆い.ま た離型剤としても使用されているように接着性 に乏しいなどの問題がある.その改善案として LT 燃料が開発されたが,大型ハイブリッドロケ ットの燃料に適用した際,構造成立性が明確に されていない.ここでの構造成立性とは,燃料が その使用環境下において受ける荷重に対する応 力や変形に構造体として耐えうるかどうかを示 す.そこで,本研究では先行研究において保管期 間約11日までのマスターカーブ²⁾を作成したLT 燃料に対し ANSYS による有限要素法(Finite Element Method:以下 FEM)解析を行うことで長 期間保管時の変形量を予測,評価する.また,保 管時のハイブリッドロケットの LT 燃料の実測 値を二ヵ月間計測する.この2つを比較し、ど れほどの誤差が出るのかを調べる.

2. LT 燃料

LT 燃料は,構成樹脂や配合量によって 10 種 類以上存在する.主な特徴としては¹⁾,従来燃料 HTPB の 2~3 倍の燃料後退速度である.また, 化学組成を変更することで弾性率や伸び率業機 械的物性の変化が挙げられる.本研究では, LT#460 を使用する.

ベース樹脂	ポリスチレン系エ
	マストマ
低融点オイル	パラフィンオイル
接着性付与樹脂	キシレン樹脂
密度[g/cm ³](室温)	0.92
弾性率[Mpa](室温)	0.26
最大伸び率[%](室温)	499.8
軟化温度[℃]	約 65
粘度[Pa・s](60°C)	24.62

表1 LT#460の基本組成及び物性²⁾

3. 緩和時間と緩和せん断弾性率

図1に示している縦軸が緩和せん断弾性率, 横軸は,緩和時間と表している.縦軸の緩和せん 断弾性率は,FEM解析に入力するため,マスタ ーカーブの緩和弾性率から計算したものである. この図1から,引張試験から得られた緩和時間 では10⁶sとなっている.10⁶sは約11日分であ り,11日以上の保管を想定した解析を実施する ことができない²⁾.約一ヵ月の解析を可能とす るために,図2のように,緩和時間と緩和せん 断弾性率を延長する.延長の方法としては,緩和 時間が10⁴sから10⁶sの時の緩和せん断弾性率を 近似し,その近似直線に沿って延長した.

図1 緩和時間と緩和せん断弾性率の関係 3)

図2 近似により補完した緩和時間と緩和せん 断弾性率の関係

4. 実験・FEM 解析条件

ANSYS Mechanical 2019 R3 上で材料定義 した LT#460 の再現性を確認するために, 実測試 験を行った. 恒温槽を用いて 100℃付近まで加熱 し溶解させ, 燃料成型治具にセットしたアクリ ルに流し込み, 燃料外径 ϕ 129mm, 内径 ϕ 45mm, 長さ 225mm となるように成型した. これは, 先 行研究である ⁴推力 5kN 級ハイブリッドロケッ トモータに使われる LT#460 の燃料長さを半分 にした値(燃料外径 ϕ 172 mm, 内径 ϕ 60 mm, 長 さ 300 mm)から, 3/4 したものである. 恒温槽 内に横置きで設置し, 40℃の温度下で八週間保 管し、この時の燃料の変形量を計測し、図3,4に 計測個所,FEM 解析条件を表2に示す.表2の想 定時間は, 一, 二, 四, 五, 八週間を表している.

図4 燃料計測箇所,断面

温度 (℃)	40
重力方向	燃料軸に対して垂直
圧力 (Mpa)	0
想定時間	168h,336h,720h,
	888h,1440h
重力加速度	9.81
(mm/s^2)	
メッシュサイズ(mm)	10
メッシュ形状	三角錐型

表 2 FEM 解析条件

実験結果及び考察 5.

5.1 全体の変形傾向

表3に示しているのは、燃料の変形量実測値 であり保管前の実測値と八週間の変形量を表し ている. また, 図 5,6 では, 図 3,4 の 1~6 の番 号を計測した全体の模式図である.LT 燃料の全 体の変形について、図5の通り断面の上下が対

照的に変形し、図6では、中心から下にへこんで いるようになっている.図7,8では,FEM解析 での全体変形量を2倍しているものであり変形 の傾向をとらえることができている.

r			
表番号	保管前の燃料の	8 週間後の	
	実測値(mm)	変形量(mm)	
図3の1	47.10	48.705	
図3の2	47.10	47.917	
図3の3	46.35	45.989	
図3の4	46.10	47.021	
図4の5	0	-5.234	
図4の6	0	3.806	

表3 燃料の変形量実測値

図5実測値の全体の変形傾向模式図(断面)

図6 実測値の全体の変形模式図(正面)

図7 八週間 FEM 解析の二倍全変形量(断面)

図 8 八週間 FEM 解析の二倍全変形量(正面)

5.2 解析誤差

図4の6の部分の実測値とFEM解析値を表4 に示す.表4から,保管期間が長くなるほど,実 測値とFEM解析値の誤差がなくなっている.一 週間の変形量では約9.5倍,二週間では約4倍, 三週間では約2.8倍,四週間では約2.7倍,八週 間では約2.68倍であることがわかる.以上の結果 を踏まえて誤差の原因は,図2で10⁶s以下の緩 和せん断弾性率を近似して求めているためであ ると考える.また,実際に1~8週間保管時した 際の変形量とFEM解析による変形量が合うよ うに10⁶s以上の緩和せん断弾性率を変更するこ とで,より正確な構造解析が可能である.

6. 結言

本研究では,FEM 解析を用いてLT 燃料#460 が ハイブリッドロケットの燃料の保管時の変形量 を定量化・評価した.全体の変形量については, 実測値と FEM 解析の値の変動が同じ傾向であ り,保管時の変形を解析する上では妥当な手法 であることが証明された.次にLT#460の実測値 と解析を行った変形量について比較.Z 軸方向 の変形量に関しては,一週間 89.89%,二週間 74.94%,三週間 64.13%,四週間 63.99%,八週間 62.74%の誤差が出た.理由は,マスターカーブを 用いて 10₆s 以下の緩和せん断弾性率を近似し,近 似直線に沿って延長したことで,誤差が大きく なったと考えられる.対策方法としては,単純な 近似ではなく、実験結果と FEM 解析値が合致す るように緩和せん断弾性率を補間することで長 時間の解析精度が向上することができる.

表 4	図4の	6番の	実測値と	と観測値	の比較
-----	-----	-----	------	------	-----

保管期	実 測 値	解析值	誤 差	
間	(mm)	(mm)	(%)	
一週間	0.82	7.9138	89.89	
二週間	2.4	9.5754	74.94	
三週間	3.654	10.188	64.13	
四週間	3.675	10.206	63.99	
八週間	3.806	10.215	62.74	

7. 謝辞

FEM 解析を行うにあたり, 福岡大学工学部機 械工学科山辺純一郎教授, 和田健太郎助教にご 支援いただきました.本研究は公益財団法人泉 科学技術振興財団の助成を受けました.上記の 方々に深く御礼申し上げます.

8. 参考文献

- M. A. Karabeyogle, et. al., "Combustion of Liquefying Hybrid Propellants : Part 1, General Theory" JOURNAL OF PROPULSION AND POWER, Vol. 18, No. 3, pp610-620, 2002.
- 川端 洋 "低融点熱可塑性エラストマを 用いたハイブリッドロケットの実用化に関 する研究,令和2年千葉工業大学,博士学位 論文
- Yo Kawabata, et. al., "Experimental and Numerical Study on Feasibility of 5 kN Thrust Level Hybrid Rocket Motor Using the Low-Melting-Point Thermoplastic Fuel" 71st International Astronautical Congress, IAC-20-C4.4.6, 2020.
- Yo Kawabata, et. al., "Experimental Study on 5kN Thrust Level Hybrid Rocket Motor Using Low-Melting-Point Thermoplastic Fuel" AIAA2020-3751, 2020.