紫外線発光ダイオードと高分子材料の光解離反応を利用した 小型推進機の性能評価

Performance Evaluation of microprorulsion system through Photodissociation reactions of ultraviolet light-emitting diode and solid material

○井上 孝輝, 篠田 修平, 小川 俊哉, 長嶋 あずみ, 渡部 耕平, 小平 隼資(東海大学), 池田 知行, 堀澤 秀之, 山口 滋(東海大学) 中山 宣典(防衛大学), 船木 一幸(宇宙航空研究開発機構)

○Koki Inoue · Syuhei Shinoda · Syunya Ogawa · Azumi Nagashima · Kouhei Watabe · Syunsuke Kodaira · Tomoyuki Ikeda · Hideyuki Horisawa · Shigeru Yamaguthi (The University of Tokai) · Hidenori Nakayama (National Defense Academy) · Ikkoh Hunaki (JAXA)

Abstract

The purpose of this research is to develop a micro thruster utilizing reaction force of molecular flow caused by dissociation of molecular bond of polymer target by irradiation with ultraviolet (UV) photon, ie photochemical reaction. Ultraviolet photons with higher photon energies can directly dissociate molecular bonds with lower binding energy than photon energy. In this study, the thrust due to photodissociation of UV-LED and Nylon 6 at 265 nm/18mW and 265 nm/25mW was measured using a torsional pendulum thrust stand. The result shows that the convergence thrust is highest with the combination of 265 nm / 25 mW LED and Nylon 6.

記号の説明

- E: 個々の光子が持つエネルギー
- h: Planck 定数
- v: 光の振動数
- c: 光速
- λ: 光の波長
- εω: 真空誘電率
- S: 極板面積
- V: 入力電圧
- d: 極板間距離

1. 研究背景

近年,大学や企業が中心の民間団体により,比較的小型の人工衛星の開発,ならびにこれらを用いた事業への参入が活発化している。こうした小型衛星は,国家主導で開発されてきた従来の大型・高機能な人工衛星に比べてシンプルで軽量に設計されるため,衛星本体の開発,製造,打ち上げに必要な費用や期間を大幅に低減できるというメリット

を持っている.また,低コストの小型衛星を複数機打ち上げて協調システムを構築することにより,単機の大型衛星だけでは困難な観測や通信といった高度なミッションの達成も可能となる.さらにこのようなシステムでは,故障した衛星だけを取り替えることで機能の回復が容易であるため,システム全体の冗長性の確保も期待される.こうした利点が注目されたことで,小型衛星の打ち上げ数は世界的に増加を続けており,2020年から2024年の間には約3000機の小型衛星が打ち上げられると予測されている[1.2].

従来,総重量百 kg 以下のクラスの小型人工衛星の多くは推進機を搭載していないため,能動的な軌道修正や軌道遷移が困難であった.しかし,将来的により高度なミッションへ小型衛星を応用することを考えると,こうした推進機の搭載は不可欠であるといえる.

小型衛星のもつサイズと電力の厳しい制約を考慮すると、搭載される推進機にも従来のものより格段に小さな質量、体積、消費電力が求められる[3]. このような制限のある機体には比推力の高い電気推進性の研究開発が各国で進んでいる. しかしながら、既存の推進システムを相似的に縮小するだけではこれらの要求をクリアすることは困難であるといわれている[3]. このことから、既存の推進機に代わる、よりコンパクトかつ低電力で動作可能な新型の電気推進機の開発が必要と考えられる.

こうした小型衛星への搭載に適した新たな推進 システムとして本研究が提案するのが、紫外線と 高分子材料の相互作用を利用した光化学推進機で ある. 光エネルギーを利用した宇宙機用推進シス テムの例としては、レーザー光によって推進剤を アブレーションさせることで推力を生むレーザー 推進や、巨大な薄膜鏡を用いることで光子を反射 して推力を得るソーラーセイルなどが研究、実証 されてきた[6]. 本研究対象である推進機はこれらの 従来の概念とは異なり、紫外線照射によって高分 子材料に生ずる光化学反応を推進に利用する. す なわち,紫外線のもつ高い光子エネルギーを推進 剤表面分子に与えることで, 分子間結合を直接切 断し,このとき排出される分子流の反力を推進に 用いる. このような紫外線のエネルギーを用いた ターゲット表面の分解除去技術は, 材料加工の分 野等では既に利用されているものの[7], これまで推 進機として応用された例は無い. 代表的な分子間 結合エネルギーの一覧, およびこれらに対応する 光の波長の一覧を表1に示す. 光子エネルギーEの 大きさと光の波長λの関係は次式で表される.

$$E = hc/\lambda \tag{1}$$

ここで、hはプランク定数、cは真空中の光速である.

本研究では小型衛星への搭載を想定し,紫外光

源として紫外線発光ダイオード (UV-LED) を用いた. UV-LED は水銀ランプやエキシマレーザーといった従来の紫外光源に比べ、極めて小型軽量であり、直流の低電圧作動が可能という利点を持つ、さらに、推進剤には取扱いの容易な固体高分子材料を使用した. これにより、非常にシンプルでコンパクト且つ低消費電力の推進機構が実現可能である.

本研究では高分子材料を推進剤として使用した.はじめに、µN級の推力測定が可能なねじり振り子式スラストスタンドを用いて推力測定実験を行った.これらの測定結果から、UV-LEDの波長、光出力の違いによる推力の比較を行った.

表 1. 分子結合と結合エネルギー一覧表

結合	結合エネルギー	最大切断波長
和百一口	[kJ/mol]	[nm]
C-N	286	418
C-C	346	346
N-H	391	306
С-Н	414	289

2. 推力測定実験

本実験では2種類のLEDを使用している. それぞれの性能は以下に示す.

表 2. 紫外光発光ダイオード仕様

順電流[mA]	350	400
順電圧[V]	6.8	7
放射束[mW]	18	25
ピーク波長[nm]	265	265

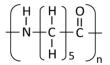


図 1. Nylon6 構造式

図 2. スラストスタンド

推力の校正はアームに装備した銅板とチャンバーに設置した銅板同士の静電力により既知の静電力と変位から UV-LED の推力を算出した. 静電力は以下の式を利用し算出した.

$$F = \frac{1}{2} \varepsilon_0 S \frac{V^2}{d^2} \tag{2}$$

ここで、極板間距離をD、極板面積をS、真空の誘電率を ω とした。校正の際は、静電アクチュエータに LED 照射時間と同じく6 秒間任意の電圧を印加し、この静電力により生じるスラストスタンドの変位を測定した。印加電圧を $30\sim50$ V の間で段階的に変化させながら複数回測定を行うことで、スラストスタンドの校正直線を作成する。この校正結果と UV-LED 照射時に生じた変位を比較することで、光化学反応による推力を算出した。

3. 実験条件および実験結果

まず、本実験で使用する LED の光出力を測定した. 実験で使用した機器は表3の通りである.

表 3. 光出力測定機器

メーカー	型番	
ウシオ電機	UIT-250	
ウシオ電機	UVD-S254	
Labspere	2インチ GPS 積分球	

これらを使用することにより LED1 では 18 mW, LED2 では 25 mW という光出力が確認された. 表 4 に種々の実験条件を示す.

表 4. 実験条件		
UV-LED	265 nm	18 mW
	265 nm	25 mW
推進剤	Nylon6	
真空度	10 ⁻⁶ Torr	10 ⁻⁴ Pa

静電アクチュエータを用いたスラスタンドの校正結果の一例を図3,4に示す。図3は極板間に30Vの電圧を印加した際に観測された変位の時間変化である。このような波形の最大振幅を読み取り、印加した電圧による静電力を式(2)から算出し、図4のような校正直線を作成した。

ナイロン推進剤に UV-LED を照射した際に発生 したスラストスタンドの変位を図 5 に示す. 図 5 より, 推進剤表面への LED 照射に伴ってスラスト スタンドに変位が生じ, 照射終了後に減衰している様子が分かる.

校正結果を用いて算出した推力を表 5 に示す. 表より, 波長 265 nm で出力が 18mW と 25 mW と 異なる場合における推力は, 最大出力は両データとも照射回数 1 回目に出現し, 2 回目以降は推力が徐々に低下し, ある値に漸近することがわかる. このときの推力の最大値は 25 mW の方が大きいことがわかる.

また,光出力では 18 mW と 25 mW で 1.4 倍の差 があるが,推力では約 1.7 倍 25 mW で発生した推力の方が大きかった.

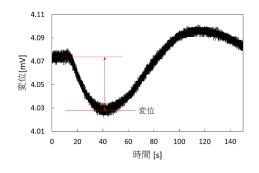


図3. 静電アクチュエータによる変位

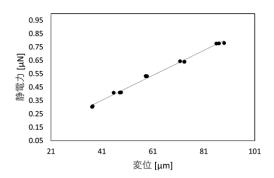


図 4. スラストスタンド校正結果の例

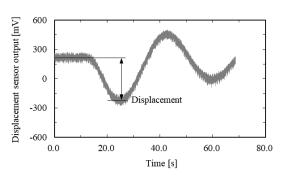


図 5. ナイロンへの LED 照射による変位

表 5. 各 LED での推力測定

	LED1	LED2
放射束[mW]	18	25
波長 [nm]	265	265
1	0.136	0.213
2	0.107	0.190
3	0.107	0.205
4	0.106	0.191
5	0.103	0.188
6	0.103	0.193
7	0.086	0.190
8	0.097	0.195
9	0.093	0.177
10	0.082	0.159

4. まとめ

UV-LED を固体表面に照射した際に発生する推力の発生特性について、光出力を変化させて評価した. その結果、波長 265 nm、光出力 18 mW の推力が 0.106 μN、波長 265 nm、光出力 25 mW の推力が 0.184 μN であった. それぞれの推力を使用した LED の光出力で割り 1W あたりの推力を比較すると 18mW では 5.91 μN/W、25 mW で 7.35 μN/W となり、25 mW を照射した際に発生した推力は、18 mW を照射した際の推力に比べ推力発生効率が高いことが分かった.

参考文献

- SpaceWorks Enterprises, Inc., "2020 Nano / Microsatellite Market Forecast", https://www.re searchgate.net/publication/341294065_NanoMicr osatellite_Market_Forecast_10th_Edition_2020
- SpaceWorks Enterprises, Inc., "2019 NA NO/MICROSATELLITE MARKET FORECA ST, 9TH EDITION", https://www.spaceworks.a ero/wp-content/uploads/Nano-Microsatellite-Mar ket-Forecast-9th-Edition-2019.pdf, 2019.
- 3) Micci, M. M., and Ketsdever, A. D. (ed.), "Micropropulsion for Small Spacecraft", American Institute of Aeronautics and Astronautics, Astronautics and Aeronautics., Vol.187, 2000.
- R.G.Jahn: Physics of Electric Propulsion, McGraw-Hill, 1968.
- 5) 栗木恭一・荒川義博:電気推進ロケット入門, 東京大学出版会,2003.
- 6) Phipps, C., Birkan, M., Bohn, W., Eckel, H.-A., Horisawa, H., Lippert, T., Michaelis, M., Rezunkov, Y., Sasoh, A., Schall, W., Scharring, S., Sinko, J.: Review: Laser-Ablation Propulsion, J. Propulsion and Power, Vol. 26, No. 4, pp.609-637, 2010.
- 7) 渡部俊太郎: エキシマレーザーの開発とその応 用技術・例, 応用技術出版, 1987.