フラッシュ X線による衝突破片の速度-質量分布の計測

長野 巧¹、荒川政彦¹、保井みなみ¹、堀川和洋¹、長谷川直² 1 神戸大学大学院理学研究科、2 宇宙航空研究開発機構

はじめに

原始太陽系星雲では、微惑星同士の衝突破壊・ 再集積により惑星が成長していたと考えられ ている。この微惑星の集積による惑星成長の タイムスケールは、微惑星の衝突破壊強度の 影響を受けていたと言われており、惑星成長 を研究する上で衝突破壊強度は重要である。 また、多数の天体が衝突進化した結果である 小惑星帯のサイズ頻度分布は、衝突天体の衝 突破壊メカニズムの変化により特徴的な分布 を持つことが分かっている。そこで今まで、 衝突破壊強度に関する室内実験、数値シミュ レーション、理論等の研究が数多く行われて きている。

衝突破壊強度は、衝突時に発生する標的の 最大破片により調べることができる。これま での研究から、衝突破壊強度は、標的に与え られた単位質量あたりの運動エネルギー(O: エネルギー密度) により記述されることにな っており、最大破片が標的質量の半分になる 時のエネルギー密度として定義されている。 この値を通常は Q*と書く。一方、衝突破壊強 度(O^{*})は、標的のスケールに依存して変化 すると言われており、数 100m より小さな標 的では主に物質強度や空隙率によりその強度 が決まっていることが分かっている。一方、 数 100m よりも大きな標的では、衝突破壊そ のものよりも破壊後の破片の再集積が最大破 片の大きさを決めるため、標的が持つ位置エ ネルギーが衝突破壊強度を決めることになる。 そのため衝突破壊強度が物質強度により決ま る時、その時の衝突破壊は強度支配域にある と言い *Q*s^{*} (Shattering strength) と記述する。ま た、衝突破壊強度が標的の位置エネルギーに より決まる時、その時の衝突破壊は重力支配

域にあると言い Q_D^* (Dispersion strength) と記 述する。これまで Q_D^* はその性質から数値シ ミュレーションにより研究が行われてきた。 しかしながら、その結果求まった Q_D^* は研究 毎に1桁以上大きく異なっている。

Jutzi (2015)は衝突破壊・再集積の数値シミ ュレーションにより Q^bを調べたが、その時 に標的の強度、空隙、摩擦が及ぼす QD*への影 響を系統的に研究した。その結果、標的の空 隙や摩擦は Q_D*に対して比較的大きな影響を 及ぼすが、強度はほとんど Q_D*には影響しな いことを見つけた。重力支配域の最大破片は 破片の速度分布によりほぼ決まるので、彼の 結果は、標的の摩擦や空隙は破片の速度分布 に影響を及ぼすが、強度はそれほどでもない ことを示唆している。従って、これまでの数 値シミュレーション間の Qp*の相違は用いて いる力学モデルの差異による可能性が高い。 このように重力支配域の衝突破壊強度は、位 置エネルギーに加えて標的の物性にも依存し ていることが分かってきた。そこで我々のグ ループでは衝突破壊時の破片の速度分布を実 験的に調べることで、重力支配域の衝突破壊 強度に対する物性依存性を明らかにすること を目指している。

我々はこれまで、凍結粘土や多孔質石膏の 標的を用いた実験を行うことで、破片速度分 布に対する空隙や強度の影響を調べてきた。 破片速度分布は 1990 年代から実験的に調べ られてきたが、高速カメラの撮影画像を用い た研究が主であったこともあり、標的内部か ら発生した破片の観測が不十分であった。ま た、カタストロフィック破砕を受けた多量の 小破片の観測などを行うことはできなかった。 そこで我々は試料内に組み込んだ複数の鉄球 トレーサーをフラッシュ X線により可視化す る観測手法を開発し、トレーサー粒子の 3 次 元速度ベクトルを調べることで標的全体の質 量-速度分布を再構築する手法を確立した。そ してこの手法により凍結粘土と多孔質石膏の 質量-速度分布を様々なエネルギー密度で求 め、速度分布に対する空隙と強度の影響を明 らかにしてきた。本研究ではこれまでの研究 の延長上として、試料の摩擦が速度分布に与 える影響を調べることにした。そのために脆 性破壊強度と空隙を持たない延性的な試料を 用いて実験を行った。

実験方法

標的にはシリコンオイルとベントナイトを 混ぜて作成したオイル粘土球と同じベントナ イトの乾燥粘土球を比較のために用いた。乾 燥粘土球の直径は60mm、密度は1.64g/cm³、 空隙率は約40%であった。オイル粘土球の直 径は65mm、密度は1.78g/cm³、空隙率は~0% であった。それぞれの球標的には、球の中心 を通る断面(トレーサー面)に直径3mmの鉄 球を12個、規則正しく配置している(図1)。 衝突実験では、このトレーサー面内に向けて 弾丸を衝突させた。

衝突破壊実験は ISAS/JAXA と神戸 大学の二段式水素 ガス銃を用いて行 った。弾丸はポリ カーボネート球と し、JAXA では直径 7mm、神戸大学は 直径 4.7mm のもの を用いた。衝突速度 は、2-4.5 km/s とし たが、その時のエネ ル ギー密度は 1.6x10³-1.4x10⁴J/kg であった。JAXA で

図 2:フラッシュ X 線の配置

はフラッシュ X線による観測を行い、神戸大 学では主に強度支配域での衝突破壊強度の測 定を行った。フラッシュ X線の撮影では2本 のフラッシュ X線(300keV)を同時に照射す ることで鉄球トレーサーの位置を3次元的に 決定した。X線の照射タイミングは、弾丸の 衝突時間から250µsから1000µsで変化させ た。フラッシュ X線を4本使える時には、2 本ずつ二度の照射を行ってトレーサーの3次 元位置を異なる2つの時間で決定してトレー サーの速度ベクトルを決めた。図2にX線の 照射方向と標的のトレーサー面の関係を示す。 なお、照射したX線は対向する位置に設置し たイメージングプレート(IP)により受光して X線の吸収イメージを撮影した。

実験結果

強度支配域の衝突破壊強度は、衝突後の最 大破片を計測してエネルギー密度との関係を 調べ得ることで決定した。図3にオイル粘土 と乾燥粘土の規格化最大破片質量とエネルギ 一密度の関係を示す。比較のためにこれまで 行ってきた凍結粘土と多孔質石膏の結果も加 えてある。乾燥粘土の衝突破片は平らな破断 面で覆われており、岩石試料のように脆性破 壊により生じたと思われる。一方、オイル粘 土の破片には平らな破断面は見られず、試料

図3:規格化最大破片質量とエネルギー密度の関係

が伸びて引きちぎられたような構造が見える。 また、破片が飛び散って回収箱に衝突して変 形した様子も見られた。このように破壊形態 に大きな違いが見られたが2つの標的では衝 突破壊強度はほぼ同じとなった。乾燥粘土の Qs*は1092J/kg、オイル粘土のQs*は1071J/kg と求まった。これらの値は先行研究の多孔質 石膏の Qs*とも類似している。乾燥粘土と多孔 質石膏は40~50%の空隙率を持つことから、 この空隙が原因で *Os**が近い値を持つのかも しれない。一方、オイル粘土は延性的な性質 を示すので Qs*が多孔質石膏や乾燥粘土に近 い値を持つのは偶然と思われる。

図4にフラッシュX線で撮影された衝突破 壊時の乾燥粘土球とシリコン粘土球の画像を 示す。衝突速度が1.8km/sと同じ場合でも乾燥 粘土とオイル粘土では破壊の様子が大きく異 なることが分かる。衝突点近傍のクレーター 形成領域は衝突後 250µs から 300µs ではオイ ル粘土の方が倍程度広くなっている。また、 衝突後 800µs から 1ms では乾燥粘土では試料 全体にクラックが広がっているのは確認でき るが、標的は元の球形を維持しており、大半 の破片はほとんど動いていない。一方、オイ ル粘土では標的は三日月状に変形しており、 これは衝突点近傍から速度分布を持って試料 が運動していることを意味する。また、反対 点付近では反射波によりスポール破壊が起き ていることも確認できる。このオイル粘土は、 衝突点付近では圧縮応力により延性的な変形

図4:フラッシュX線撮影画像.(a)乾燥粘土,(b) オイル粘土. 数字は衝突からの経過時間. CH1-4 は フラッシュX線のチャンネル、衝突速度は1.8km/s.

図5:トレーサー粒子の速度ベクトル.(a) オイル粘 土、(b) 乾燥粘土. 衝突速度は 1..8km/s.

を示すが、反対点付近では引っ張り応力によ り脆性的な引っ張り破壊を起こしている。こ の試料は引っ張り応力に対しては、低速変形 においては大変形を伴う延性破壊を起こすこ とが知られていた。今回の研究から、高速変 形ではスポール破壊のような脆性破壊を起こ すことが分かったので、引っ張り応力に対す る応答は、歪速度依存性が顕著であることが 明らかになった。また、撮影した画像を見る と、このスポール破壊が最大破片を含む比較 的大きな破片を生ずるメカニズムであること が分かる。これらの観察結果から、このオイ ル試料は引っ張りの歪速度が低速から高速に 変化すると延性-脆性転移を起こすことが分 かった。

撮影画像のトレーサー粒子の位置を解析す ると各粒子の速度ベクトルを得ることができ る。図5は各トレーサー粒子の速度ベクトル を表すものであり、オイル粘土の場合は衝突

図6:規格化積算質量と破片速度の関係.

点近傍から離れるにつれて速度が遅くなるこ とが分かる。一方、乾燥粘土球ではエネルギ 一密度はオイル粘土球とほぼ同じであるにも かかわらず、ほとんどトレーサー粒子は動い ていないことが分かる。このように乾燥粘土 球とオイル粘土球では Qs*がほとんど同じで あるが、トレーサー粒子の速度分布には大き な違いがある。

このトレーサー粒子の速度分布を用いて、 標的の全衝突破片の速度を求めることを試み る。その時、速度分布は衝突点とその反対点 を結ぶ直線(衝突軸)に対して軸対称である と仮定する。また、トレーサー面を軸方向と 角度方向に区切って 216 に細分割し、分割し た各要素は最近接のトレーサー粒子の速度で 運動すると仮定する。この各要素について衝 突軸を中心に 180°回転して体積を計算し、そ の体積に密度をかけることで質量を計算する。 このようにして質量-速度関係を求めた。

図6はオイル粘土標的に関して、ある速度 よりも飛翔速度が遅い質量の積算値を示した ものである。ただし、速度は重心系での速度

図7:中間速度とエネルギー密度の関係

を示している。この図から衝突速度が速くな ると積算分布の傾きが緩くなってることがわ かる。ここで積算質量が標的質量の半分にな る時の速度を中間速度 (v*) と定義して各実験 での v*を求めた。その結果、v*は 9m/s から 24m/s と衝突速度と伴に大きくなっているこ とが分かった。従ってこの v*は破片速度の代 表値の一つと考えることができる。図7にエ ネルギー密度と中間速度の関係を示す。乾燥 粘土は先行研究の多孔質石膏と似た値を持ち、 オイル粘土と較べてかなり v*が小さくなる。 一方、オイル粘土は先行研究の凍結粘土と似 た値を持ち、多孔質石膏よりも v*はずっと大 きい。中間速度の定義から、v*よりも遅い破片 の速度は標的質量の半分となるので、この中 間速度と標的天体の脱出速度を比較すること で重力支配域の衝突破壊強度 OD*の概算値を 計算することができる。この計算から、v*が大 きな標的では Q_D*が小さく、v*が小さな標的で は Q_D*は大きくなることが分かる。つまり、オ イル粘土と乾燥粘土は、Qs*がほぼ一緒である にもかかわらず、Qo*はオイル粘土の方が乾燥 粘土よりもかなり小さくなる。ところでオイ ル粘土の v*は、凍結粘土の v*とほぼ一緒に見 える。両者は空隙を持たない点では一致して いるが、引っ張り強度や摩擦は、その物性値 が大きく異なる。それにも関わらず v*が近い 値を持つということは、標的がカタストロフ ィック破壊するような激しい破壊では、破片 速度分布には摩擦や引っ張り強度はあまり影 響しないことを示しているのかもしれない。

参考文献: Jutzi, M. (2015) Planetary and space science, 107, 3-9.