大電力マイクロ波放射用のアンテナで発生する放電現象の観察

Observation of Discharge Phenomena on High-Power Microwave Antenna

○阿久津壮希¹,太田大智¹,山岸 稜也¹,伊地智幸一²,齋藤宏文³,齋藤智彦¹,田中孝治⁴
¹東京理科大学,²一般財団法人宇宙システム開発利用推進機構,³早稲田大学
⁴総合研究大学院大学・宇宙航空研究開発機構/宇宙科学研究所

1. 序論

1.1 宇宙機における大電力マイクロ波システム

我々は、宇宙機における大電力マイクロ波シス テムについて研究を行なっている。本研究では、 アンテナから数 100 W/m² の電力を放射する宇宙 機搭載用マイクロ波システムを指す。以下に、大 電力マイクロ波システムの2 例を紹介する。

まず、最初に太陽発電衛星 (SPS) 凹である。SPS は、アメリカやヨーロッパ、日本など様々な国で 多様なモデルが開発された。その多くは、静止軌 道上で太陽光発電を行ない、その電力をマイクロ 波に変換し地上に送電するシステムである。SPS は、宇宙空間で太陽光発電を行なうため、様々な メリットがある。例えば、地上とは違い天候や昼 夜に依存することなく発電が可能である。そのた め、現在の化石燃料に頼り切ったエネルギー問題 の解決への一つとして期待されている。その中で、 我々は図1に示すような発送電一体型テザーモデ ルについて研究を行なっている。このモデルは、 2.4×2.6kmの超巨大建造物で、発電能力は2GWの 想定である^[2]。そのため、アンテナは約300 W/m² の電力を放射する想定である。

次に、合成開口レーダ (SAR) 衛星を紹介する。 SAR 衛星は、マイクロ波を用いて地上の観測を行 う。その1例として、現在運用されている小型 X バンド SAR 衛星がある。将来的には 20 機程度の 衛星が運用を開始し、多数機コンステレーション 技術を用いた同一地点の常時観測化や震災時の即 時観測化を可能にするとして期待される^[3]。

1.2 研究目的

大電力放射用アンテナにマイクロ波を入力した 際、図2のような発光が確認された。宇宙機内で 放電が起きれば、最悪の場合運用不能に陥ったケ ースもある。そのため、放電抑制の技術は宇宙機 に対して重要な課題である。その一方で、大電力 マイクロ波システムの放電現象は未解明な部分も 多い。大電力マイクロ波システムを安定的に運用 するためにも、その知見を得る必要がある。

我々は、室内実験から放電現象機構を解明し、 放電抑制方法の確立を目的とし、研究している。

図1 発送電一体型テザーモデル

図2 大電力放射用アンテナと放電光

2. 大電力放射用アンテナと放電現象

大電力放射用アンテナでは、主に2種類の放電 メカニズムが考えられる。1つは、気体放電である。 気体放電は、電界によって加速された電子が気体 分子と衝突し、気体分子が電離することによって 発生する。気体放電にも複数種あり、不平等電界 中で発生するコロナ放電や気泡(ボイド)などの 閉じられた系で発生するボイド放電などがある。

もう一つは、マルチパクタ放電である。マルチ パクタ放電は、高周波環境下での共振現象として 発生する。交流電界中で加速された電子が表面材 料に衝突する。このとき、電子が適当なエネルギ ーを持っていると、表面材料から二次電子が放出 される。これを繰り返すことによって、電子がね ずみ算式に増え、放電に至る。

上記のような放電機構によって、抑制方法も異 なる対策が必要である。例えば、気体放電の場合 はアウトガスや気泡などの空気分子の供給源を削 減することが必要である。一方で、マルチパクタ 放電の場合は二次電子放出係数が低い表面材料な どを用いることが必要となる。つまり、放電抑制 方法を確立するためには、放電機構を解明するこ とが重要である。

3. 実験手法

本稿では、放電抑制方法の確立のために、我々 が取り組んでいる実験手法を記す。本実験で用い た大電力放射用アンテナは図2に示したスロット アンテナである。

図3 本実験のコンフィグレーション

図 3 に本実験のコンフィグレーションを示す。 本実験は、大電力マイクロ波入力系と放電観察系 に分かれている。マイクロ波を生成するために SG (Signal Generator)を用いた。そのマイクロ波をFG

(Function Generator) によってパルス波に変調し、 TWTA (Traveling Wave Tube Amplifier) にて増幅し た。TWTA は最大デューティ比 5%でパルス動作を 行う。ATT (Attenuator) によって、大電力放射用 アンテナに入力する電力を制御する。TWTA の帯 域制限により、8-10GHz の X バント帯に関して、 任意の周波数と電力 (8kW まで)を入力すること が可能である。本実験では 9.5~9.8 GHz, 30~1500 W まで入力した。

次に放電観察系であるが、こちらも大きく分け て2つある。光学的観測系と電波的観測系である。 光学的観測系にはモニタ TV カメラと光学カメラ を用いた。モニタ TV カメラは広角な画角を持ち、 6 つ用いることで図 4 のようにアンテナ全域を観 察することが可能である。また、Video Capture を 用いることで、モニタ TV に映し出された画像の 記録が常時可能である。

モニタ TV カメラでは放電光が確認できるため、 放電の発生が分かる。その一方で、モニタ TV カ メラでは 2 次元的な判断のみしかできない。つま り、放電箇所の詳細な知見を得るためには、細部 観測のための光学カメラを用いる必要がある。光 学カメラは、モニタ TV カメラよりも画角が狭い。 その分、画素数や感光度、接写リングなどを用い た撮影方法の自由さなどのメリットがある。

図4 モニタ TV カメラによるアンテナ全域の観察

放電箇所がモニタ TV カメラによって特定され れば、図 5 のように光学カメラを放電箇所にフォ ーカスして設置することが可能である。今回は、 放電現象の接写を試みた。また、従来よりも光源 の数を増やすことによって、F 値やフレームレー トを大きくした。そうすることで、被写界深度の 深い画像の取得やデータの取得条件の調整が可能 となった。

図5 チャンバ内の様子

放電現象が視認できない箇所で起こる場合を考 慮し、電波的観測系を用いた。放電現象から放出 される電波を観測するために、受信用のアンテナ を用いて、それを RTSA (Real Time Spectrum analyzer) と OSC (Oscilloscope) にて検知した。

4. 実験結果

本稿では、光学的観察系の結果を主に記す。図6 のように、モニタ TV カメラにて放電現象を観測 した。そのため、放電箇所を二次元的に特定し、光 学カメラによる詳細な観察を行なった。その結果 が図7である。図7は1.5kWのマイクロ波を入力 した際に観測した放電現象である。

これらの結果から、入力する電力や周波数を変 化させても放電箇所が変化しないことが分かった。

図6 モニタ TV カメラで捉えた放電現象

(a) 9.5 GHz

(b) 9.65 GHz

図7 光学カメラで捉えた放電現象

一方で、図7を比較すると入力する周波数を変 化させると光量に変化が見られた。このことか ら、放電箇所に周波数依存性はないものの、光量 は周波数依存性があると言える。また、図7より 放電現象はアンテナ内部で発生していることが分 かった。光学カメラでは、161 Wの入力電力で放 電現象を確認した。つまり、数 100 W/m²で現在 も運用されている大電力マイクロ波システムにお いて、放電する可能性は高いと言える。

5. 考察

放電箇所のスロットを観察すると、図8のよう にハニカムコアのケバが随所に見られた。アンテ ナパネルを構成するハニカムコアの切断面のケバ は製造上やむを得ず、また放電現象との相関は確 認されていないが、電界が集中する要因とも考え られる。

また、内視鏡を用いて放電箇所のスロット内部 を観察すると、ハニカムコアや電波吸収体のくず、 複数の気泡が見られた。気泡は気体分子の供給源 となると考えられ、気泡を要因として気体放電が 発生している可能性がある。

図8 放電箇所のスロットとケバ 我々は、同一形状の大電力放射用アンテナを9 枚用いて、室内実験を行なった。内2枚は2,3日、 他7枚は2週間のベーキングを施した。2,3日間 のベーキングを行なったアンテナパネルでは図7 のような放電現象が確認されたものの、2週間の ベーキングを行なったアンテナパネルについては、 放電現象が確認できなかった。つまり、今回観測 した放電現象は気体放電に依る可能性が高い。更 には、ある程度長期的なベーキングが放電現象の 抑制に効果的であると言える。また、気体放電で ある可能性が高いため、気体分子の供給源となる 気泡などを減らすことも、放電現象の抑制に効果 的であると言える。

6. 結論

大電力放射用アンテナにて、161 W の入力電力 で放電現象を確認した。そのため、通常運用され るマイクロ波システムにおいても放電する可能性 は高いと言える。また、放電抑制方法の1つとし て長期的なベーキングが有効である。今回の放電 現象は気体放電である可能性が高く、気体分子の 供給源である気泡を減らすためにも、接着剤シー トなど製作工程の見直しが必要である。

7. 参考文献

[1] P. Glaser, Power from the Sun ; Its Future, Science, no. 162, 1968.

- [2] 篠原真毅, 現在電子情報通信選書『知識の森』 宇宙太陽光発電, 株 式会社オーム社, 2012.
- [3] ImPACT, "オンデマンド即時観測が可能な小型合成開口レーダ衛星 システム," 2014. [オンライン].