低軌道 ADR ミッションにおけるターゲット物体の姿勢運動解析 Analysis on Attitude Motion of ADR Target in LEO

○松下 悠里 (九州大), 板谷 優輝 (スカパーJSAT), 吉村 康広 (九州大), 福島 忠徳 (スカパーJSAT), 花田 俊也 (九州大) ○MATSUSHITA Yuri (Kyushu Univ.), ITAYA Yuki (SKY Perfect JSAT Corporation), YOSHIMURA Yasuhiro (Kyushu Univ.), FUKUSHIMA Tadanori (SKY Perfect JSAT Corporation), HANADA Toshiya (Kyushu Univ.)

高速大容量通信の実現を目的とする数千機規模のコンステレーション衛星の計画をはじめとした、宇宙利用 の急速な拡大に伴い,軌道環境のより一層の混雑が懸念されている. その解決策の一つとして,スカパー JSAT 株式会社は不用な衛星等を対象にレーザーアブレーションの技術を応用した非接触方式の ADR 衛 星の設計および開発に着手している. 一般に ADR ミッションでは、ターゲット機体の回転量を事前に把握 し、ミッション運用に反映する必要がある。ターゲット機体には様々な外乱トルクが加わるため、複雑な運動が 予測される. 本発表では、低軌道衛星を対象に、重心位置のずれを考慮した、姿勢および角速度解析の結 果を示す.

The orbital congestion is becoming an urgent issue with increasing space activities, such as satellite constellations for high-speed and large-capacity communications. Therefore, SKY Perfect JSAT Corporation has started out designing and developing an ADR satellite. The satellite applies laser ablation technologies so that it does not require any physical contact with a target object. ADR mission generally requires grasping the rotational motion of the target object in advance and reflecting it in its mission operations. The target object's motion is usually complicated due to various disturbance torques acting on it. This presentation shows the short-term and long-term variation of attitude and angular velocities of the target object in Low Earth Orbit, considering the shift of the center of gravity.

Analysis on Attitude Motion of ADR Target in LEO

低軌道ADRミッションにおけるターゲット物体の 姿勢運動解析

○Yuri Matsushita,¹⁾ Yuki Itaya,²⁾ Yasuhiro Yoshimura,¹⁾ Tadanori Fukushima ²⁾ and Toshiya Hanada ¹⁾ (¹⁾ Kyushu University,²⁾ SKY Perfect JSAT Corporation) ○松下悠里¹⁾,板谷優輝²⁾,吉村康広¹⁾,福島忠徳²⁾,花田俊也¹⁾ (¹⁾九州大学,²⁾ スカパーJSAT株式会社)

2021/02/25

Analysis on Attitude Motion of ADR Target in LEO

1

ADR satellite developed by SKY Perfect JSAT

- The orbit congestion is becoming an urgent issue with increasing space activities.
- SKY Perfect JSAT Co. has started out designing and developing ADR satellite using laser ablation technologies.
- ADR system using laser is economical and does not require physical contacts.

ADR satellite designed and developed by SKY Perfect JSAT Laser ablation technologies

2021/02/25

Analysis on Attitude Motion of ADR Target in LEO

2

ADR mission using laser ablation technologies

Output of this research

• Quantitative analysis of attitude angles and angular velocities for debris in LEO to clarify mission requirements

Conditions

■ Initial values

Angular velocities

Attitude angles

[0.0, 1.0, 1.0] deg. ① [0.0, 0.0, 0.0] deg./min. ② [0.0, 60.2, 0.0] deg./min.

assumption

Angular momentum of a reaction wheel (0.42Nms) on the minor axis of inertia (Max initial angular velocities)

Perturbations

- Gravitational gradient
- Aerodynamic drag

Need to be considered in Low Earth Orbit

Solar Radiation Pressure

Unconsidered conditions

- Self-shadowing Almost no effect on angular velocities in preliminary analysis The moment of inertia in each axis increases by about 2%, Product of inertia which is a safe condition. 2021/02/25 5
 - Analysis on Attitude Motion of ADR Target in LEO
 - No initial angular momentum

Center of mass	(1) [0.078, 0.030, 0.078] m
Angular velocities	1 [0.0, 0.0, 0.0] deg./min.

Angular velocities in deg./min.

Analysis on Attitude Motion of ADR Target in LEO

6

Assumption 2-years analysis.

- Center of mass deviated by 6% from center of geometry on all axes
 - No initial angular momentum

1-day analysis

Assumption

- Center of mass deviated by 6% from center of geometry on \boldsymbol{x} axis
- No initial angular momentum

Attitude angles in deg.

1-day analysis

Assumption

• Center of mass deviated by 6% from center of geometry on all axes

Angular velocities in deg./min.

• Angular momentum of a reaction wheel (0.42 Nms) on the minor axis of inertia (y-axis)

Center of mass(1) [0.078, 0.030, 0.078] mAngular velocities2 [0.0, 60.2, 0.0] deg./min.

Attitude angles in deg.

2021/02/25

Analysis on Attitude Motion of ADR Target in LEO

10

Assumption 2-years analysis . Center of mass

• Center of mass deviated by 6% from center of geometry on all axes

(1) [0.078, 0.030, 0.078] m

Angular momentum of a reaction wheel (0.42 Nms)

Both the norm of angular velocities and angular momentum are almost same as the initial values on the minor axis of inertia (y-axis)

Center of mass

Summary

Center of mass	Residual angular momentum	Angular velocities	Angular momentum
6% shift in all axes	Zero	< <u>+</u> 6 deg./min.	Max 0.25 Nms
6% shift in x axes	Zero	< ±6 deg./min.	Max 0.18 Nms
6% shift in all axes	0.42 Nms	Single spin the rate of 60 deg./min.	0.42 Nms

Discussion

- The satellite starts rotating again after a certain period.
- The operation without increasing rotation of the satellite is necessary during the deorbit process.

2021/02/25

Analysis on Attitude Motion of ADR Target in LEO

13

Conclusion

- This research demonstrates the short-term and long-term variation of Euler angles and angular velocities of the target object in LEO.
- We obtained quantitative analysis of attitude for debris in LEO to clarify mission requirements.

Future work

• Redefinitions of the shift in center of mass and initial momentum are needed after detailed target determination.