第21回 宇宙科学シンポジウム

複数衛星で、集合・離脱が自由な ワイヤレス干渉計を実現する技術

川口淳一郎 (JAXA) 〇名田悠一郎 (東大) 藤田雅大 (東大)

背景

衛星を用いた電波干渉計ミッション

これまでに、複数衛星による電波干渉計ミッションは実現例がない。

VSOP(HALCA), ISAS, 1997

Hirabayashi et al., 2000.

SunRISE, NASA

Kasper et al., 2020.

DARIS, ESA

Saks et al., 2010.

OLFAR, Delft I. U. Bentum et al., 2020.

ntr	odu	otion	h
IILI	ouu	CUUI	1

Method

Result

Conclusion

This document is provited by 2AXA.

解決すべき問題・研究目的

解決すべき問題

宇宙機干渉計構築において、

観測対象と子機、子機と集約点の間の**2種の距離**は、 基本的に不明で<mark>不確定性</mark>があり、本来得たい観測位相 情報を乱す要因である。子機ごとに異なるそれらをす べて把握・管理することには大きな困難さがある。

研究目的

複数衛星による干渉計のための 相対距離の不確定性を補償する 通信スキームを構築すること

- 回線の二重化
 - 子機において、観測信号のほかに、クェーサーや 遠方にいる宇宙機などから参照信号を受信する。
 - 子機上の局所発振器で二波それぞれダウンコン バート処理を行い、親機へ中継する。

提案手法

- 回線の二重化
 - 子機において、観測信号のほかに、クェーサーや 遠方にいる宇宙機などから参照信号を受信する。
 - 子機上の局所発振器で二波それぞれダウンコン バート処理を行い、親機へ中継する。
 - 親機において、混合処理で、子機ごとに異なる観 測情報を乱す位相変動を相殺する。各子機で得られるはずの位相情報をすべて再生・取得する。
 - 片方向通信・独立分散処理
 - = 参加や離脱が自由なシステム

提案手法

- 回線の二重化
 - 子機において、観測信号のほかに、クェーサーや 遠方にいる宇宙機などから参照信号を受信する。
 - 子機上の局所発振器で二波それぞれダウンコン バート処理を行い、親機へ中継する。
 - 親機において、混合処理で、子機ごとに異なる観 割情報を乱す位相変動を相殺する。各子機で得ら れるはずの位相情報をすべて再生・取得する。
- 信号強度分布の推定

Method

- 受信位相情報と信号強度分布との関係を線形化。
- 受信位相情報のみで、信号強度分布を推定する。

Obs. Data

 $F = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_N \end{bmatrix}^T$

Result

Conclusion

Y. Nada

his document is provited by

Method

具体的な応用の一例

観測天体の信号を、静止軌道上の集積個体に集積するケース

参照信号に用いる電波天体について

受信電力に関する簡易な概算

	輝線 信号強度	帯域	アンテナ 面積	アンテナ 開口効率	LNA 雑音温度	積分時間	元の 信号強度	積分後 受信電力	S/N
Stardust 銀河	200mJy	100MHz	100m ²	0.5	15K	1 sec	1.00 x 10 ⁻¹⁷ W	2.07 x 10 ⁻¹⁸ W	~5
	1Jy	200MHz	1m²	0.5	15K	100 sec	1.00 x 10 ⁻¹⁸ W	3.00 x 10 ⁻¹⁹ W	~3
NGC1068	100m	200MHz	-	-	10K	3600 sec	1.00 x 10 ⁻¹⁹ W	3.00 x 10 ⁻²⁰ W	3

河野孝太郎, ミリ波サブミリ波天文学への招待 (Web)

Stardust銀河などからの信号を用いて、位相同期することが可能。

Conclusion

実験目的・実験系

- 音波の伝播のもと、提案手法の原理を検証する。
 - 位相保存性(子機で得られるはずの情報を親機で再生する)

※スピーカー・マイク間の距離が近いが本質的に問題でない。

位相保存性

: 子機での位相情報を親機で再生できるか(位相保存性)

各子機と親機間の距離にかかわらず、

1.5 deg以内の精度で位相情報を再生できた。

Introduction Nethod Result Conclusion Y. Nada This document is provin	Introduction	Method Result	Conclusion	Y. Nada	This document is provited b $1 \mathcal{R}$ A.

信号強度分布の推定手法

▶ 受信位相情報と推定すべき信号強度分布の関係を線形化

$\boldsymbol{F} = \boldsymbol{S}\boldsymbol{G}\boldsymbol{\mu} \ \boldsymbol{s} \cdot \boldsymbol{t} \cdot \left\|\boldsymbol{\mu}\right\|_2 = 1$

- ✓ F:受信位相情報に関するベクトル
- ✓ S: 共通な位相バイアスの行列
- ✓ G:子機と観測対象の微小要素の空間位置
 に関するジオメトリ行列
- ✓ µ:信号強度分布に関するベクトル
- 要求分解能から対象面をメッシュ化
- 解が無数に存在。
- 逐次二次計画法(SQP)で最適化。

子機1

Y. Nada

信号強度分布の推定手法

▶ 一つの点源での推定

扫照	メッシュ	18x18
竹兄王」	視野角	0.1deg. x 0.1deg.
	周波数	10 MHz
観測対象	信号源点数	1
	光軸方向距離	100 AU
子機	最大基線長	200 km x 200 km
	子機数	324

- 点源推定が可能であった.
- 子機の基線平面上の位置のみが把握で きていれば推定可能である. 光軸方向の 位置が不明であっても問題ない.
- 推定側の把握する子機の位置情報が,最 大基線長の5%程度の誤差を含んでいて も,推定可能である.

信号強度分布の推定手法

- >> 線形近似を用いた手法
 ->解像度以上の観測数が必要
- ▶ スパースモデリング
 - ブラックホールの直接撮像でも利用されている手法
 - ✓ 推定対象の解の非零成分が少ないと仮定できる場合(天体画像など),観測数が少なくても解を推定することが可能。
 - LASSO (Least Absolute Shrinkage and Selection Operators)

$$\mu = \underset{\mu}{\operatorname{argmin}} \left\{ \left\| F - SG\mu \right\|_{2}^{2} + \lambda_{1} \left\| \mu \right\|_{1} \right\} \qquad s.t. \quad \left\| \mu \right\|_{2} = 1$$

$$\checkmark \quad \left\| F - SG\mu \right\|_{2}^{2} : \hat{a} \hat{c} \hat{c}$$

$$\checkmark \quad \left\| \mu \right\|_{1} = \left| \mu_{1} \right| + \left| \mu_{2} \right| + \ldots + \left| \mu_{n} \right| : L1 \land \mu \Delta$$

ブラックホールの直接撮像 (EHT Collaboration)

 λ_1 : 正規化パラメータ

信号強度分布の推定手法:高分解能化

➤ LASSOによる推定結果

扫照	メッシュ	18x18
1元主)	視野角	0.1deg. x 0.1deg.
観測対象	周波数	10 MHz
	信号源点数	1
	光軸方向距離	100 AU
子機	最大基線長	200 km x 200 km
	子機数	324

子機位置

LASSOによりノイズが除去された

真の分布

推定結果

Intr	ndi	Icti	n
	out	JUU	

Problem	宇宙機群による干渉計実現の課題: 2種の相対距離の不確定性	
	参照信号を用いた回線の二重化と	

	シホロク と用いた国际の一主 しし
Method	混合処理による子機ごとに異なる位相差の相殺
	受信位相情報のみで、信号強度分布を推定(画像化)

	Result	音波実験による原理確認 の試験を実施 位相保存性を確認 信号強度分布推定シミュレーションの実施 位相情報から強度分布を復元することができた。
	Conclusion	提案手法による干渉観測システムの 一定程度の実現性・有効性を確認した。
ntroduction	Method	Result Conclusion

Y. Nada

ありがとうございました