

16

現在の課題と今後の計画

課題

- ・
 シング ルエレメントの結果の通り、再循環流れを十分正確には表現で きていない。
- RANS解析であっても解析負荷が高い.
- 不連続格子位置における熱流束の不連続性.

今後の計画

- 乱流燃焼モデルの検討.
- 越モデル(高圧水素酸素素反応モデル)の導入.
- 実スケールへの拡張。
 - 高速化検討
 - 簡略化指針の検討

その他気になっていること

- 壁面付近での反応
- 輻射

18

		まと	:め		
熱 性 関	流束評価に着目し、乱済 の導入を実施した。また 調連する現象を理解した。	流境界層の壁面 ミ,実際の燃焼	漸近挙動モラ 試験を模擬す	デルの検証,実在気体な することで熱流束評価	物 こ
	Near-Wall Model Model 1 (Low-Re)	Flat Plate Fair	Nozzle Good	Expansion tube Bad	
	Model 2 (Two-layer)	Good	Fair	Good	
	 異なる3つの特性なる壁面漸近挙動モークのところ、場ークのところ、場ー シング MIDメント燃焼解布を支配している マルチIDメント燃焼解析位置が熱流束分布 	を持つ乱流境 デルはなかっ 所によってモデ Model 3 M がわかっ を実施し、 を支配してい	界層をすべった。 デルを使い分 lodel 3 Mo 再循環領域 った。 ハグ ルエレメント る	て完ぺきに評価でき けている の評価が熱流束分 こ異なり,火炎付着 つかった.	19
_	謝辞 マルチエレメント燃焼試験を実施し、データをご提供いただきました角 田宇宙センターの皆様、MHI名古屋誘導推進システム製作所の皆様に対 して、ここに謝意を評します.				
					20