

11

1A-14 APC-7におけるNASA-CRMの 低速・高迎角時の風洞試験データ NASA Common Research Model (CRM) wind tunnel data at low speed and high angle of attack conditions in APC-7

香西政孝(JAXA) KOHZAI Masataka (JAXA)

The 53rd Fluid Dynamics Conference/ The 39th Aerospace Numerical Simulation Symposium, 30th June 2021

Outline

1

- Explain NASA CRM data measured at JAXA 6.5m × 5.5m low speed wind tunnel provided to APC-7.
- Please refer to '2A03' at this symposium, if you want to know details of the wind tunnel results.

Contents

- Wind tunnel tests description
 - Wind tunnel and Model description
 - Measurement items and wind tunnel condition
- Wind tunnel test data
 - Forces and moments
 - Surface pressure data of main wing and h-tail (Steady and Unsteady)
 - Vibration data of main wing and h-tail
 - Oil flow visualization
 - Stereo PIV

2

JAXA 6.5m × 5.5m low speed wind tunnel (JAXA LWT1)

□ Models are supported with two struts.

□ Forces and moments are measured with pyramid-type 6 component balance.

Wind tunnel model

13

NASA Common Research Model

- Scale to assumed aircraft: 4.32%
- Length: 2.711m
- Span length: 2.539m
- Reference area: 0.716m²
- Reference cord: 0.303m
- Applied trip dots
 - ✓ Location :Wing, horizontal tail, Nose.
 - ✓ Height: 11.4 [in/1000]
- Used horizontal tail with pressure transducers
 - ✓ Pressure taps: 12
 - ✓ Kulite transducers: 10
- Bonded Kulite transducers on the main wing
 - ✓ Kulite transducers: 4

Locations of pressure taps, kulite transducers, and strain gages on the main wing and horizontal tail

5

			_		
Strain gages		Pressure	Pressure Tap		
		Port	η	Location Cord	1,%
			1	0.8 Leading edge	0
			2	0.8 Upper	5
n=0.25 n=0.34 n=0.95			3	0.8 Upper	10
			4	0.8 Upper	20
			5	0.8 Upper	45
	\ \		6	0.8 Upper	90
			7	0.95 Leading edge	0
	7		8	0.95 Upper	5
	Due course to use a sed		9	0.95 Upper	10
	Pressure taps and		10	0.95 Upper	20
	Kulita transducers on		11	0.95 Upper	45
	Runte transducers on		12	0.95 Upper	85
Kulite transducers on the wing	the horizontal tail				
	_	Kulite			
		Port	η	Location Cord	1, %
			1	0.7 Upper	5
				Leading	
			2	0.8 edge	0
n=0.25 🔲 🗖			3	0.8 Upper	10
			4	0.8 Upper	20
			5	0.8 Upper	40
η=0.34 🗳 🗳			6	0.9 Lower	12.5
15% 55%	η=0.7			Leading	
	η=0.8		7	0.95 edge	0
	n=0.9		8	0.95 Upper	15
	'η=0.95		9	0.95 Upper	20
			10	0.95 Upper	40

6

Measurement data sets

Test id	Model	Test conditions	Measurement items	Provided to APC
Sting Cart Test	NASA CRM	V=60m/s Re=1.06 × 10 ⁶	Forces and Moments Oil flow visualization PIV (x-z Section)	APC6 APC6 APC7
1 st Strut Cart Test	NASA CRM Main wing : Kulite transducers horizontal tail :pressure taps and Kulite transducers	V=53-60m/s Re=1.06 × 10 ⁶	Forces and Moments Oil flow visualization Steady pressures Unsteady pressures Vibration of the wings	APC7
2 nd Strut Cart Test	NASA CRM	V=53-58m/s Re=1.06 × 10 ⁶	Stereo PIV (y-z Section)	APC7

Wind tunnel results

7

□ Stall characteristic at high AoA

- Forces and Moments
- Oil flow visualization
- Steady and Unsteady pressures, and vibrations of wing and h-tail
 - · Steady pressures on wing and h-tail
 - Unsteady pressures on wing and h-tail
 - Vibration of wing and h-tail
- Velocity distributions between wake of main wing and h-tail
 - PIV(x-z section)
 - Stereo PIV(y-z section)

8

Though the separation area is outside of the kink on the main wing at AoA=11.5degree, the separation area spreads near wing root at stall angle.

• At the stall angle, the lift of the h-tail is reduced.

• At the stall angle, the suction is reduced, so that the flow separation on the main wing is confirmed.

%The data is interfered with existence of the Kulite transducers.

- The RMS of unsteady pressures of wing and h-tail increases drastically at the stall angle of 12.5 degrees. With that increases, vibration of h-tail increases.
- Vibration of main wing increases from angles of 9 degrees. H-tail vibrates slightly also.

□ At the sting cart test, PIV measurements are conducted. At the post stall angles, we confirmed separation flow effects on η =0.8 and 0.9 of the horizontal tail.

- PIV data are measured at pre-stall and post-stall angle of attack.
- At post-stall, separation flow on the main wing interfere with the h-tail.