Seventh Aerodynamics Prediction Challenge（APC－7） 2021／06／30，Online

1A18：Aerodynamic Analysis of NASA－CRM at Low Speed and High Angle of Attack conditions Using Hierarchical Cartesian Mesh and Immersed Boundary Method
（階層型直交格子と埋め込み境界法を用いた低速•高迎角条件 におけるNASA－CRM巡航形態の空力予測）

OAtsushi Hara，Keisuke Sugaya，Taro Imamura （The University of Tokyo）

查京大学

Outline

－Background
－Objective
－Computational conditions
－Numerical methods
－Immersed boundary method
－Computational grid
－Results
－Aerodynamic coefficients
－Time history
－Q criterion
－Conclusion

Background

－Development of UTCart for aircraft design．
－Grid generation＋flow simulation．
－Automatic and robust generation of hierarchical Cartesian grid．
－Immersed boundary method（IBM）on stair step grids．
－Compressible RANS／DDES simulation with wall function．

APC－7 吉永，菅谷 and 今村，流力ANSS2020．

菅谷 and 今村，流力ANSS2020。

Results of APC－6（1）（IBM）

－A good agreement of aerodynamic coefficients between UTCart and the experiment at low angles of attack（AoA）．
－At high AoA，UTCart and the experiment differ．
－Effects of grid size needs to be investigated．
－Further study of influence of numerical method is also necessary．

APC－7 1）Yoshinaga，H．，Sugaya，K．，and Imamura，T．，APC－6， 2020

Objective

－To calculate the NASA－CRM cruising configuration at low speed with finer grids than APC－6 using IBM．
－To investigate the effect of the difference in the grid width of the wake area．
－To assess the prediction accuracy of UTCart for low speed and high AoA simulations．

Numerical method

	Steady	Unsteady
Governing equation	RANS	DDES－p（1）
Turbulence model	SA－noft2－R（2）（Crot $=1)$	
Inviscid flux	SLAU＋MUSCL $(\kappa=1 / 3)$	
Viscous flux	$2^{\text {nd }}$ order central difference	
Time integration	MFGS （Local time stepping）	MFGS（Constant dt）
Initial condition	Free－stream	Restart from RANS
Wall boundary condition	IB＋SA wall model	
Distance between Image Point and wall $\left(d_{I P}\right)$	$2 \Delta x$	

1）玉置 et al．，航空宇宙学会年会， 2018.
2）Dacles－Mariani，j．，et al．，AIAA J．， 1995.

Immersed boundary method

－Flow variables on the Face Center（FC）are calculated from variables on the Image Point（IP）and wall boundary conditions．
－Assuming that tangential velocity is linear between the IP and the wall using
 wall functions（1）．
$u_{t, F C}=u_{t, I P}-u_{\tau}\left\{\frac{\partial f_{\text {wall }}}{\partial y^{+}}\left(y_{I P}^{+}\right)\right\}\left(y_{I P}^{+}-y_{F C}^{+}\right)$

Image Point
Face Center
Wall model Linear profile

1）Tamaki，Y．，Harada，M．，and Imamura，T．，AIAA J．，Vol 55， 2017.

Computational grid

－Unstructured hierarchical Cartesian grid．
－Two grids are used in both steady simulations and unsteady simulations．

	Grid \＃1（140M）	Grid \＃2（90M）
Total cell number	1.37×10^{8}	9.02×10^{7}
Domain size［in．］	2.76×10^{4}	2.76×10^{4}
Minimum grid size［in．］	0.281	0.281
Crid size of refinement box ［in．］	2.24	4.49
MAC／Minimum grid size	981	981

Computational grid

Grid \#1 (140M), section YA ($y=252$ [in.])

Grid \#2 (90M), section YA ($y=252$ [in.])

Computational grid

Grid \#1 (140M)

Aerodynamic coefficients

－Macro trends match the experiment．
－There is little difference between steady simulation of 140M grid and 90M grid．

Aerodynamic coefficients

－Steady simulations overestimate C_{L} at high AoA．
－Flow separation seems underestimated．
－Results of unsteady simulations are closer to the experimental values than steady simulations．

Aerodynamic coefficients

- Predicted C_{D} values are smaller than the experimental values at high AoA.
- C_{M} values are underestimated.
- Unsteady simulations are closer to the experiment.

Time history

- Unsteady simulations (DDES) start after 15000 steps of steady simulations (RANS).
- The results from step 45001 to step 90000 are used in this research (about 6.15 sec .).
- $\Delta t=1.37 \times 10^{-4} \mathrm{sec}$. (both 140M and 90M)

Time history（140M）

－Periodic oscillation is observed at $\mathrm{AoA}=11.05$［deg．］．
－Flow becomes non－periodic at $\mathrm{AoA}=13.08$［deg．］．

AoA $=11.05$［deg．］，Unsteady（140M）

AoA $=13.08$［deg．］，Unsteady（140M）

APC－7
15

Time history（90M）

－At AoA＝ 11.05 ［deg．］，flow has both periodic and non－periodic characteristics．
－At AoA＝ 13.08 ［deg．］，flow is non－periodic．

AoA $=11.05$［deg．］，Unsteady（90M）

Q criterion

- There is a difference in the wake by AoA and grids.

- At AoA = 13.08 [deg.], separation occurs from leading edge.

AoA $=11.05$ [deg.], Unsteady (140M)

AoA $=11.05$ [deg.], Unsteady (90M)

AoA $=13.08$ [deg.], Unsteady (140M)

AoA $=13.08$ [deg.], Unsteady (90M)

Conclusion

－Flow simulations for NASA－CRM at low－speed conditions are conducted by using UTCart and IBM．
－In many cases，the effect of the difference in the grid width of the wake area is small．
－The tendency of the aerodynamic coefficients at low angles of attack is consistent with the experimental results．
－Flow separation at high angles of attack is underestimated in steady simulations．
－Unsteady simulation improves the predictions of flow separation and aerodynamic coefficients．

Appendix

Coefficients of each component (Unsteady, AoA = 11.05 [deg.])

AoA = 11.05 [deg.]		C_{D}	C_{L}	C_{M}
140 M	Main wing	4.79×10^{-2}	7.30×10^{-1}	-1.10×10^{-1}
	Fuselage	3.39×10^{-2}	1.38×10^{-1}	1.70×10^{-1}
	Tail wing	6.67×10^{-3}	3.20×10^{-2}	-1.32×10^{-1}
	Total	8.84×10^{-2}	9.00×10^{-1}	-7.26×10^{-2}
	Main wing	4.47×10^{-2}	6.88×10^{-1}	-7.65×10^{-2}
	Fuselage	3.35×10^{-2}	1.36×10^{-1}	1.70×10^{-1}
	Tail wing	6.41×10^{-3}	2.97×10^{-2}	-1.23×10^{-1}
	Total	8.46×10^{-2}	8.54×10^{-1}	-2.94×10^{-2}

Coefficients of each component (Unsteady, AoA = 13.08 [deg.])

AoA $=13.08$ [deg.]		C_{D}	C_{L}	C_{M}
140 M	Main wing	9.48×10^{-2}	8.29×10^{-1}	-9.41×10^{-2}
	Fuselage	4.50×10^{-2}	1.70×10^{-1}	1.94×10^{-1}
	Tail wing	8.71×10^{-3}	3.77×10^{-2}	-1.54×10^{-1}
	Total	1.49×10^{-1}	1.03	-5.48×10^{-2}
90 M	Main wing	9.55×10^{-2}	8.05×10^{-1}	-8.94×10^{-2}
	Fuselage	4.49×10^{-2}	1.69×10^{-1}	1.92×10^{-1}
	Tail wing	8.56×10^{-3}	3.54×10^{-2}	-1.45×10^{-1}
	Total	1.49×10^{-1}	1.01	-4.13×10^{-2}

Computational grid of APC－6（1）

	Steady		unsteady
	w／o sting	$\mathrm{w} /$ sting	
Total cell number	6.85×10^{7}	8.14×10^{7}	5.52×10^{4}
Domain size［in．］	2.76×10^{4}	2.76×10^{4}	2.76×10^{4}
Minimum grid size［in．］	0.421	0.421	0.421
Grid size of refinement box ［in．］	3.37	3.37	3.37
MAC／Minimum grid size	655	655	655

