Numerical Simulations of Compressible Flow around the NASA-CRM using Cartesian Cut-Cell Method with Wall-Stress Model

壁面応カモデルを適用した直交カットセル法 によるNASA-CRMまわりの圧縮性流れの数値解析

Yuta Takahashi, Yuki Takeda, Karin Matsubara, Kazuyuki Ueno (Iwate University)

2021/6/30

APC-7

Cartesian Grid Method

Characteristics of Cartesian grid

- Easy grid generation and full automation
- Fast and robust grid generation

One of the most useful computational methods for complex shaped object

Typical Cartesian grid method

- Cartesian Cut-Cell Method
- Voxel Method
- Immersed Boundary Method

Cartesian Cut-Cell Method

Cut-Cell method cuts the computation cells according to object shape.

- <u>Smoother surface</u> than voxel method.
- <u>Satisfy the mass conservation law</u>.
 (IB method is not satisfy.)

On the other hand...

- Need to be divided into a large number of cases depending on many cutting patterns.
- Problem of CFL condition in small cells.

2021/6/30

Objective

Aerodynamic prediction on the NASA-CRM using Cartesian Cut-Cell Method with Wall-Stress Model is performed.

APC-7

Simulation Method

Conservation Equation	Compressible Navier-Stokes Equation		
Wall Shear Stress	Wall-Stress Model[1]		
Discretization Method	Cell-Centered Finite Volume Method		
Wall Treatment	Cartesian Cut-Cell Method		
Inviscid Flux	SLAU (5th-Order MUSCL + Thornber's Modification)		
Viscous Flux	2nd-Order Central Difference		
Time Integration	2nd-Order TVD Runge-Kutta Method		
Turbulence Model	Implicit LES		

[1] S. Kawai, J. Larsson, "Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy ", Physics of Fluids 24, 2012.

2021/6/30

APC-7

Wall-Stress Model for Cut-Cell Method

1) Extend the probe vertically from the wall.

 Generate virtual grid system (1D) in the vertical direction of the wall, based on the extended probe.

71

Wall-Stress Model for Cut-Cell Method

APC-7

7

3) The values at the probe tip are interpolated from the neighboring cell-centers by Inverse Distance Weighted Interpolation, and input as a boundary condition for Wall-Stress Model.

2021/6/30

Wall-Stress Model for Cut-Cell Method

2021/6/30

Computational Conditions

Case2: Unsteady computation

-Mach number : $M_{\infty} = 0.168$

-Reynolds number : $Re_c = 1.06 \times 10^6$

-Reference temperature : $T_{ref} = 310$ K

-Angle of attack : $\alpha = 11.05^{\circ}$

2021/6/30

APC-7

Computational Grid

Cartesian grid (Uniform + Non-Uniform)

	Minimum cell size $\Delta x (\Delta x / C_{ref})$	Total cell number
Coarse	$0.1 \text{ m} (1.43 \times 10^{-2})$	54,737,280 cells (731 \times 360 \times 208)
Fine	$0.05 \text{ m} (7.14 imes 10^{-3})$	379,011,072 cells(1402 × 704 × 384)
2021/6/30		APC-7

10

2021/6/30

Results : Flow Field (Coarse)

Time-averaged flow field (Coarse)

Time-averaged flow field (Fine)

2021/6/30

Results : Surface Streamline (Time-averaged)

2021/6/30

APC-7

Fine

Results : Aerodynamic Coefficients (C_L , C_D , C_M)

	C _L	C _D	C _M
Exp. [2]	0.9172	0.1247	-0.0537
Coarse	0.9687	0.1440	-0.1601
Fine	1.300	0.2884	-0.4612

[2] T. Uchiyama et al., "Experimental Investigation of 160% Scaled NASA Common Research Model at Low Speed Conditions ", 7-11 January 2019, San Diego, California, AIAA Scitech 2019 Forum, AIAA 2019-2190.

2021/6/30

APC-7

17

Result : Pressure Coefficient C_p

Conclusion

Numerical simulations of compressible flow around the NASA-CRM using Cartesian Cut-Cell Method with Wall-Stress Model were performed.

- The position of leading edge separation of main wing approaches the experiment by increasing grid resolution.
- Both Coarse grid and Fine grid, wake of main wing passed above the tail wing.
- Lift coefficient and Drag coefficient of Coarse grid were close to that of the experiment.
- Lift coefficient and Drag coefficient of Fine grid was overestimated compared to Coarse grid and experiment.

2021/6/30

APC-7