1A20

Comparative Study on Turbulence Models and Numerical Flux Functions in NASA CRM Unsteady Low-Speed Buffet Simulations

OY. Yasumura and K. Kitamura, Y. Furusawa (Yokohama National University) and M. Kanamori and A. Hashimoto (JAXA)

[1] Andreas Waldman, Philipp Gansel, Thorsten Lutz, Ewald Kramer : Unsteady Wake Flow of an Aircraft under Low-Speed Stall Conditions in DES and PIV, 53rd AIAA Aerospace Sciences Meeting, 2015

Background

> \tilde{d}/d is visualized around the leading edge of the main wing by color counter. O(**Blue**) roughly corresponds to **LES** region, and 1(**Red**) is **RANS** region.

	Condi	tions	5 [3]	
	Mach Number	:	M = 0.25	
	Reynolds Number	:	Re = 1.16×10	
	Angle of Attack	:	α = 18 [deg	
	Met	Methods		
ΝΙΔΟΔ ΓΡΜ	Numerical Flux	:	SLAU	
22,823,905 cells	Turbulent Model	:	DDES	
	Time Integration	:	LU-SGS	
	Slope	:	Green-Gauss	
	Clana Limitar	•	Hishida(vI.)	

Objective

Investigate the effects of the turbulence models and numerical flux functions in Unsteady NASA CRM Low-Speed Buffet Simulations

Case				
HH	:	HR-SLAU2&HR-DDES		
HS	:	HR-SLAU2&SA-DDES		
SS	:	SLAU2 & SA-DDES		

Conditions

.

Task 2 : Unsteady simulations

Using "HexaGrid" Grid (provided by JAXA)

Conditions				
Mach Number	:	Μ	= 0.168	
Reynolds Number	:	Re	$= 1.06 \times 10^{6}$	
Angle of Attack	:	α	= 11.05, 13.08 [deg.]	
Time Step	:	Δt	= 0.0125 [-]	
		(2.4	8×10 ⁻⁴ [s])	

6

Conditions

Task 2 : Unsteady simulations

Using "HexaGrid" Grid (provided by JAXA)

	Δt	Error [%]
HH_Case1	0.05	97.76
HH_Case2	0.025	22.81
HH_Case3	0.0125	3.391

 Δt=0.0125 yielded the smallest error from Exp. data

82

Conditions

Methods

Task 2 : Unsteady simulations

Using "HexaGrid" Grid (provided by JAXA)

Methods			
Solver	:	FaSTAR	
Numerical Flux	:	SLAU2 or HR-SLAU2	
Turbulence Model	:	HR-DDES or SA-DDES	
Time Integration	:	LU-SGS	
Slope	:	Green-Gauss	
Slope Limiter	:	Hishida(vL)	

Result Time History of Aerodynamic Coefficients (HH_AoA1105)

The aerodynamic coefficients fully converge in the averaged duration

ΗH

HS

SS

10

HR-SLAU2 & HR-DDES HR-SLAU2 & SA-DDES

SLAU2 & SA-DDES

Case

:

÷.

ŝ

<u>Resu</u>	lt

Aerodynamic Coefficients

	Ao	11.05	AoA	13.08
	C _D Ave.	C _D Error [%]	C _D Ave.	C _D Error [%]
нн	0.1299	4.139	0.2021	1.544
HS	0.1499	20.18	0.2187	6.527
SS	0.1484	18.98	0.2168	5.626
Exp.	0.1247		0.2053	

	AoA	11.05	AoA13.08		
	C _L Ave.	C _L Error [%]	C _L Ave.	C _L Error [%]	
ΗΗ	0.9122	0.5491	0.9623	3.420	
HS	0.8752	4.578	0.9238	0.7196	
SS	0.8781	4.261	0.9182	1.326	
Exp.	0.9172		0.9305		

The case closest to the Exp. is shown in **red**.

11

- HH showed the closest value to the Exp. for almost all the aerodynamic coefficients compared.
- > $C_{\rm M}$ showed relatively large errors from Exp. regardless of the selected methods.
- > Nevertheless, only HH can capture the trend of increase of C_M with increasing angle of attack.

	_				Case
Resu	t		HH	:	HR-SLAU2 & HR-DDES
			HS	:	HR-SLAU2 & SA-DDES
Streamlir	nes			:	SLAU2 & SA-DDES
	Exp. ^[4]	нн	HS		SS
AoA11.05	11.05° 				+
AoA13.08	13.08 13.14 13.143 14.08 13.143 14.08 13.143 14.08 13.143 14.08 14.08 15.145 15	+			

Flow separation point predicted by HH is the closest to the Exp.

[4] Hashimoto Atsushi, Kanamori Masashi, Kirihara Ryohei, Matsuzaki Tomoaki, Nakamoto Keita, Hayashi Kenji : Steady and Unsteady computation on NASA-CRM with FaSTAR at low speeds and high angles of attack, Fluid Dynamics Conference / Aerospace Numerical Simulation Symposium 2020 Online, Sixth Aerodynamics Prediction Challenge (APC-6), 2020.

	Case
Result	HH : HR-SLAU2&HR-DDES
	HS : HR-SLAU2 & SA-DDES
Wake Interference with Tail	SS : SLAU2 & SA-DDES
HH_AoA11.05_Section YB(Averaged)	HS_AoA11.05_Section YB (Averaged)
Avg V.x 50 30	Avg V-x 50 30
SS_AoA11.05_Section YB (Averaged)	 Main wing wake is generated at the boundary between the separation and attached regions. In HH, the main wing wake does not interfere with the tail wing.

Case				
НН	:	HR-SLAU2 & HR-DDES		
HS	:	HR-SLAU2 & SA-DDES		
SS	:	SLAU2 & SA-DDES		

- > HS and SS showed relatively similar distributions, different from HH.
- > HH showed a spike of C_p around x/c = 0.35 at the 25.3% position.

	Case		
Result	НН	:	HR-SLAU2 & HR-DDES
	HS	:	HR-SLAU2 & SA-DDES
C _n in HH	SS	:	SLAU2 & SA-DDES

- > The spike of C_p occurred at switching location of the cell sizes/geom.
- > More severe cell treatment will suppress the spike?

	Case	
Conclusions	НН	: HR-SLAU2&HR-DDES
	HS	: HR-SLAU2 & SA-DDES
_	SS	: SLAU2 & SA-DDES
HH yielded the closest aerodynamic coefficient values to the experiment.		
HH predicted the flow separation point of the experiment.	F	H A0A1105
The LUL the major wind water did not interfere with	_	III_AOATTOJ
the tail wing. This led to lift increase of the tail and its negative pitching moment.	Colous.cost) 2.000 2.500	
HS and SS showed relatively similar C _p distributions, that were different from HH.	F	IS_AoA1105
HH exhibit a spike in the C _p profile, originated from the switching point of cell sizes/geometries.	Cripres.cort) 1.200 1.350	
		22

Acknowledgments

The flow solver used here was **FaSTAR** developed at JAXA, as well as the mesh generator **HexaGrid**.

The computations were conducted using JAXA's Supercomputer System(**JSS**) 3.

Mr. Ogawa, Suguru, Mr. Takimoto, Hiroyuki, Mr. Harada, Toshiaki and Mr. Takagi, Yuya at Yokohama National University performed a part of numerical cases.

We appreciate their cooperation.