

1A21

#### Flux-Reconstruction法と壁面モデルを用いた NASA-CRMの低速・高迎角流の非定常解析

Unsteady Flow Analysis for NASA-CRM at Low-speed and High Angle-of-attack Conditions Using Fluxreconstruction Method and Wall-Model

SAKAI Ryotaro, OHAGA Takanori, FUKUSHIMA Yuma, MURAYAMA Mitsuhiro (JAXA), AMEMIYA Takashi (QuickMesh), ITO Hiroyuki (Ryoyu Systems)



□ To assess the prediction capability of the state-of-the-art high-order scheme (Split-FR) and the wall-stress model for practical unsteady flows, which is realized by LS-FLOW-HO solver.

Grid dependency for WMLES

Overset grid approach to satisfy the grid requirement with minimal increase of grid cells.

□ Case 2 : Unsteady flow analysis

Flow conditions:  $M_{\infty} = 0.168$ ,  $Re = 1.06 \times 10^6$ Angle of attack: 11.05 [deg]

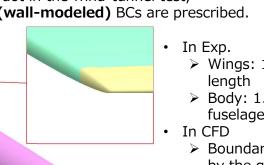


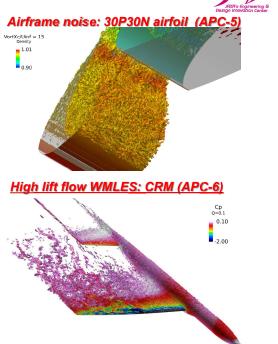
4



92

| Discretization    | Split-FR (p0-15) [1]                        |  |
|-------------------|---------------------------------------------|--|
| Inviscid Flux     | Roe                                         |  |
| Viscous Flux      | BR2 $(\eta_{BR2} = 6.0)$                    |  |
| SGS Model         | None (Implicit LES)                         |  |
| Time Integration  | 3 <sup>rd</sup> -order TVD Runge-Kutta      |  |
| Shock Capturing   | LAD <sup>[2]</sup> (not used in this study) |  |
| Wall Stress Model | Equilibrium BL eqs. [3]                     |  |
| Parallelism       | MPI & OpenMP/OpenACC                        |  |
| Grid              | Hex cell, <mark>Overset</mark>              |  |


[1] Y. Abe, et al., JCP 353 193-227 (2018)


T. Haga and S. Kawai, JCP 376 534-553 (2019)
 T. Haga and S. Kawai, The 31<sup>st</sup> CFD symposium (2017) (in Japanese)

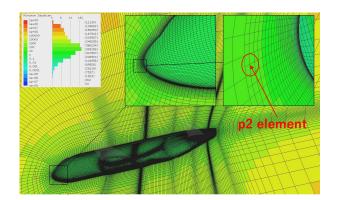
Transition Treatment

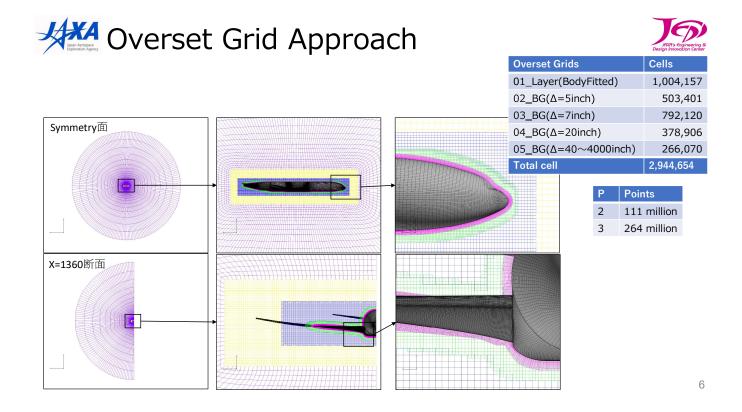
According to the locations of trip-dot in the wind-tunnel test, laminar (no-slip) or turbulent (wall-modeled) BCs are prescribed.

- Wings: 10% of each chord length
- ➢ Body: 1.5% of the fuselage length
- Boundary surface is split by the grid line that is close to the 10% of MAC (wings).





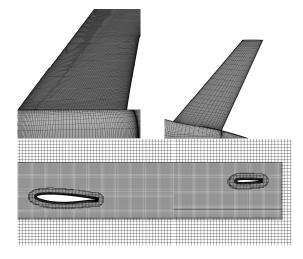







- Modified the AIAA-DPW4 RNAS mesh (JAXA-Multiblock-Coarse) 2,293,988 cells Points 2 62 million 3 147 million 287 million 4
- Enlarged cell-height for WM:  $\frac{\Delta h_{wall}}{c} = 7.25e-5(y^+ < 10)$ Each hex was subdivided into 8 hex by **Pointwise** Glyph script. (Feature lines are kept exactly)
- In the near wall (24 layers), the 8 hex were combined into a p2-element by QuickMesh.
- p2-p1 mixed mesh in Gmsh format










- Controlled grid resolution for the layer grid (body-fitted)
  - LE:  $x/c \sim 0.1$ :  $h_w = 0.2 \delta_{max}/c_{MAC}$



Grid Requirements by Prof. Larsson https://wmles.umd.edu/wall-stress-models/grid-requirements/

| $\Delta x \lesssim egin{cases} 0.05\delta{-}0.10\delta \ 0.6h_{ m wm}{-}1.0h_{ m wm} \end{cases}$         | , outer layer<br>, log – layer                            |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\Delta p \lesssim egin{cases} 0.01 \delta {-} 0.04 \delta \ 0.2 h_{ m wm} {-} 0.3 h_{ m wm} \end{cases}$ | $, \ { m outer} \ { m layer} \ , \ { m log} - { m layer}$ |
| $\Delta z \lesssim egin{cases} 0.04\delta {-} 0.08\delta \ 0.4h_{ m wm} {-} 0.8h_{ m wm} \end{cases}$     | , outer layer<br>, log – layer                            |

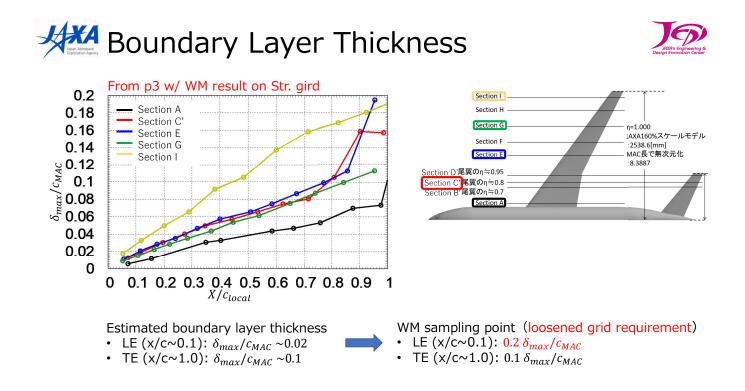
- FR-p3 was validated for parallel channel flow  $\Delta x_e/\delta \approx 0.08, \Delta y_{\min,e}/\delta \approx 0.02, \Delta z_e/\delta \approx 0.05$

7

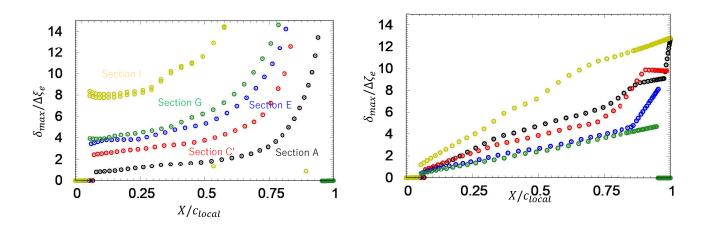




JAXA 4.32% scale model:  $C_{ref}$ =0.30262 [m], Flow through time:  $C_{ref}/U_{\infty}$ =0.005104 [s]


| Case     | Grid     | $h_{ m smp}/C_{ m ref}$ | $\Delta t$<br>· $a_{\infty}/C_{ m ref}$ | Timestep<br>s for<br>10 C <sub>ref</sub> /U <sub>∞</sub> | Cores (CPUs)<br>Fujitsu FX1000 |             |      | Restart |
|----------|----------|-------------------------|-----------------------------------------|----------------------------------------------------------|--------------------------------|-------------|------|---------|
| P2 w/ WM | Str-2020 | 5.0e-4                  | 3.0e-6                                  | 1.98e+7                                                  | 4096 (128)                     | 282 (7.46)  | 378  | Uniform |
| P3 w/ WM | Str-2021 | 2.0e-3                  | $\uparrow$                              | $\uparrow$                                               | 12288 (256)                    | 325 (6.05)  | 537  | Uniform |
| P4 w/ WM | 1        | $\uparrow$              | $\uparrow$                              | $\uparrow$                                               | 12288 (256)                    | 368 (4.23)  | 868  | From p3 |
| P2 w/ WM | Overset  | 4.0e-3                  | 1.2e-4                                  | 4.95e+5                                                  | 12000 (250)                    | 27.9 (9.07) | 30.8 | Uniform |
| P3 w/ WM | ↑        | $\uparrow$              | 0.8e-4                                  | 7.43e+5                                                  | 12000 (250)                    | 35.0 (3.76) | 93.0 | Uniform |

#### <u>Str-2021</u>


- Enlarged minimum edge length : slight larger dt than APC6
- Higher  $h_w$ : based on the BL thickness from p3-WM result.

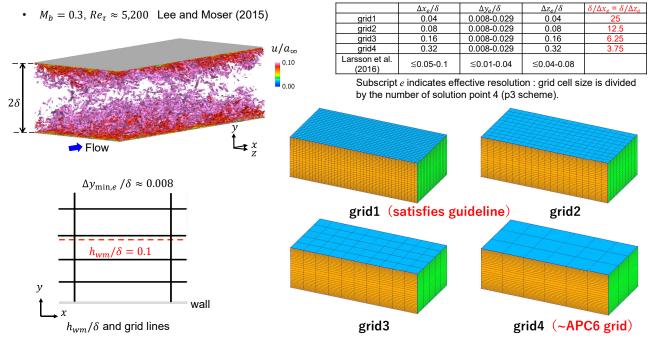
#### Overset grid

• 26.6-40 times larger dt than Str-2021



Effective resolutions in parallel directions



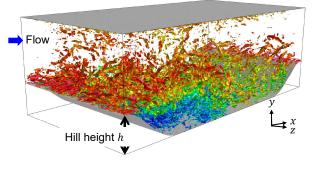


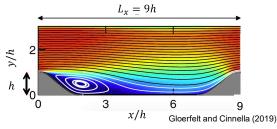


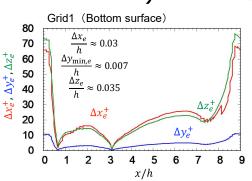


### WMLES on very coarse grids



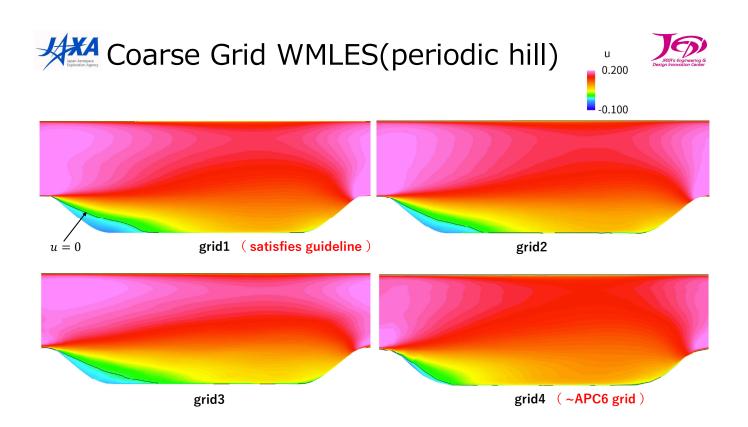


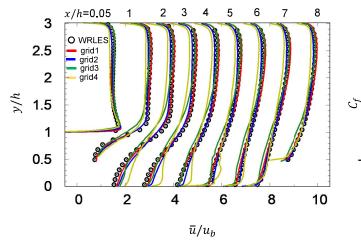



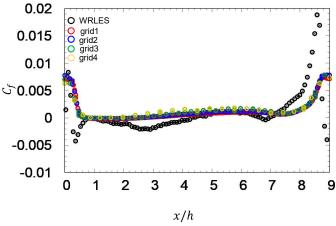

# Coarse Grid WMLES(periodic hill)

- $u_b = 0.2$ ,  $Re_h \approx 37,000$  Gloerfelt and Cinnella (2019)
- $h_{wm}/h = 0.1$







|                          | $\Delta x_e/h$ | $\Delta y_{\min,e}/h$ | $\Delta z_e/h$ | $h/\Delta x_e$ | $h/\Delta z_e$ |
|--------------------------|----------------|-----------------------|----------------|----------------|----------------|
| grid1                    | 0.03           | 0.007                 | 0.035          | 33.3           | 28.5           |
| grid2                    | 0.06           | 0.007                 | 0.07           | 16.6           | 14.3           |
| grid3                    | 0.12           | 0.007                 | 0.14           | 8.3            | 7.1            |
| grid4                    | 0.24           | 0.007                 | 0.28           | 4.15           | 3.55           |
| Larsson et<br>al. (2016) | ≲0.05-0.1      | ≲0.01-0.04            | ≲0.04-0.08     |                |                |

Subscript e indicates effective resolution : grid cell size is divided by the number of solution point 4 (p3 scheme).



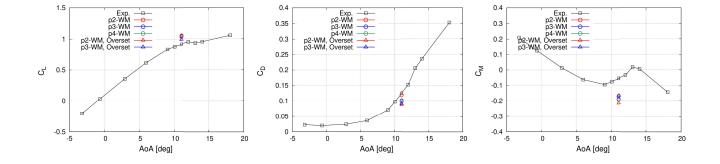






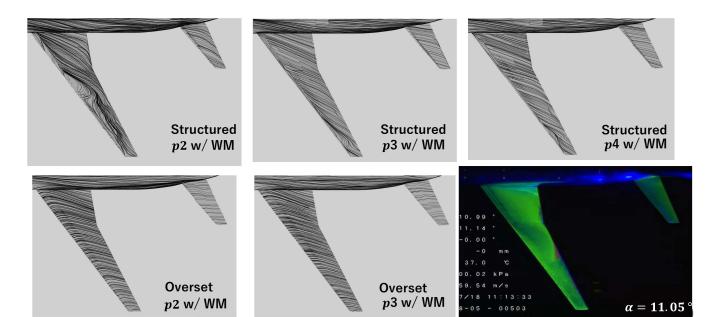
Velocity profile: grid1 agrees well with WRLES

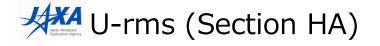
 Skin friction: discrepancy between WMLES and WRLES. Need improvement of the wallmodel for separated flows.



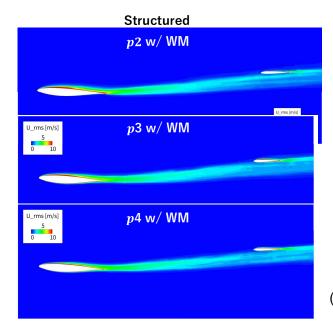



### APC7 Results


## Force Coefficients (Averaged)





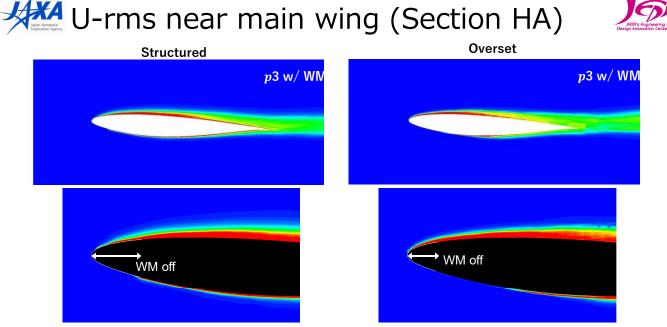


## Oil Flow (Comparison with Exp.)














Main wing: smaller U-rms with higher resolution.
Tail wing: Difference between Str. vs Overset (same surface grid but larger cell height in overset).

100

20



Width of laminar B.C. depends on the grid surface. (split by a grid line close to 10% of MAC)
Higher U-rms near L.E. on overset grid (due to insufficient grid resolution?)



- Robust WMLES computations for CRM were performed by LS-FLOW-HO (upto p4 (5<sup>th</sup>-order), no parameter tuning of the scheme).
- Grid dependency for WMLES was studied especially for very coarse grids. The following trend was observed:
  - Overestimate of Cf for channel flow case
  - Small separation for periodic hill case
- Overset grid is very effective to reduce total grid cells while keeping the grid requirement
- Reasonable CL, CD prediction comparing to RANS results in APC6. Slight improvement by Overset-p3 case.
- Difficult to predict oil flows in the present cases. (No separation by Overset results) Further grid dependency study is needed (strictly satisfy the guideline, near LE?)
  - h/p adaptive solver will be more effective?



21





23

- JAXA Supercomputing System (JSS3) was used for the computations.
- Part of this work was supported by JSPS KAKENHI Grant Number 21K14083.