The 53th Fluid Dynamics Conference/ The 39th Aerospace Numerical Simulation Symposium 30th June 2021

APC-7の集計結果 Summary of APC-7

橋本 敦 (JAXA), APC有識者会議 Hashimoto Atsushi(JAXA), APC committee

Statistics of submitted data

- Organizations and number of submitted data(total 23 data)
 - National research institutes : JAXA(11)
 - Universities: Univ. of Tokyo(6), YNU(3), Iwate Univ.(1)
 - Aerospace industries: KHI(2)
- Grids
 - JAXA:5
 - Customs:5
- Code
 - Unstructured solver(16)
 - Cartesian solver(7)
- Turbulence models
 - Steady: SA(7), SST(3)
 - Unsteady: SA(8), SST(3), ILES(2)
- Initial conditions
 - Steady: Uniform flow(10)
 - Unsteady: Uniform flow(4), Restart from the steady-state solution(8), Mapping(1)

Participants of case 1

ID	Name	Organization	Code	Grid	Turbulence Model	Initial Condition	Note
A1		JAXA	FaSTAR (Unstructured solver)	BOXFUN	SST-2003	Uniform flow	Hanging node
A2				UPACS	SA-noft2-R		
A3	橋本敦				SST-2003		
A4				MEGG3D	SA-noft2-R		
A5					SST-2003		
B1	L 上野 陽亮 川I 2	川崎重工	Cflow (Unstructured solver)	Custom (Orthogonal octree + Body- Fitted layer grid)	SA-neg	Uniform flow	Local time step
B2							Global time step
C1	C1 原惇 東 C2	東京大学	UTCart (Cartesian solver)	Custom (Orthogonal grid)	SA-noft2-R (Crot=1)	Uniform flow	Grid #1 (Number of cells is 140M)
C2				Custom (Orthogonal grid)			Grid #2 (Number of cells is 90M)
D1	菅谷圭祐	東京大学	UTCart (Cartesian solver)	Custom (Orthogonal grid)	SA-noft2-R (Crot=1)	Uniform flow	

3

Participants of case 2

ID	Name	Organization	Code	Grid	Turbulence Model	Initial Condition	Note
A1	橋本敦 JAXA		BOXFUN	SST-2003 IDDES		Hanging node	
A2			FaSTAR (Unstructured solver)	UPACS	SA-noft2-R IDDES	Restart from the steady-state solution	
A3		JAXA			SST-2003 IDDES		
A4				MEGG3D	SA-noft2-R IDDES		
A5					SST-2003 IDDES		
C1	匠橋	UTCart 東京大学 Solver)	UTCart	Custom (Orthogonal grid)	$(A = A^2) D(C = A = A)$	RANSの収束解か らリスタ ー ト	Grid #1(Number of cells is 140M)
C2	1尿1字		(Cartesian solver)	n Custom (Orthogonal grid)	SA-nonz-k (Crot=1)		Grid #2 (Number of cells is 90M)
D1	菅谷圭祐	東京大学	UTCart (Cartesian solver)	Custom (Orthogonal grid)	DDES-protected (SA-noft2-R Crot=1)	RANSの収束解 からリスタ ー ト	
E1	坂井玲太 郎	JAXA	LS-FLOW-HO (Unstructured solver)	Custom (Hexa second order element)	ILES	同じ迎角の「4次 精度•wall-model 無し」の解から マッピング	
F1	髙橋佑太	岩手大学	Cut-Cell Iwate (Cartesian solver)	Custom (Orthogonal grid)	ILES+Wall model	Uniform flow	
G1		^{衬祐哉} 横浜国立大 学	FaSTAR (Unstructured	HexaGrid	SA-noft2-R DDES (Cdes = 0.51, Crot = 2.0)	Uniform flow	HR-SLAU2
G2	安村祐哉 横浜国立大 学				SA-noft2-R DDES (Cdes = 0.65, Crot = 1.0)		HR-SLAU2
G3		3017017		SA-noft2-R DDES (Cdes = 0.65, Crot = 1.0)		SLAU2	

Surface grid(Wing root)

Surface grid(Wing root)

Surface grid(Wing root)

Surface grid(Wing root)

Surface grid(Tail)

Case1: Steady computation

- Aims
 - Understand the prediction accuracy of aerodynamic performance such as CL, CD, Cm at low speeds and separation characteristics (beginning of separation, separated area).
 - Understand the dependency of turbulence model, grid.
- Conditions
 - M = 0.168, $Re_c = 1.06 \times 10^6$, $T_{ref} = 310K$
 - AoA = -3.22, -0.67, 2.89, 5.95, 9.01, 10.03, 11.05, 12.06, 13.08, 14.08, 18.08deg

13

Wake interference with tail (11.05deg, Section YB)

The attached cases are close to the experiment

19

The attached cases are close to the experiment

Wake interference with tail (13.08deg, Section YB) Section YC(η =0.95) Section YB(η =0.8) η=1.0 PIV(AoA=13deg) 70.0 50.0 30.0 Ľ A-UP-SA A1-BO-SST A3-UP-SST A4-ME-SA A5-ME-SST C2-Cu-SA D1-Cu-SA B1-Cu-SA C1-Cu-SA B2-Cu-SA

The separated cases are close to the experiment

21

Wake interference with tail (13.08deg, Section YC)

The separated cases are close to the experiment

Surface Cp distribution (Tail, Section HB-HC)

Cross section	η	y[mm]
Section HA	0.6	277
Section HB	0.8	369
Section HC	0.95	438

α[deg]		
CFD	EXP	
-3.22	-3.0	
-0.67	-0.5	
2.89	3.0	
5.95	6.0	
9.01	9.0	
10.03	10.0	
11.05	11.0	
12.06	12.1	
13.08	13.0	
14.08	14.1	
18.08	18.1	

Surface Cp distribution (Tail, Section HB-HC)

Surface Cp distribution (Tail, Section HB-HC)

1.1

Case2: Unsteady computation

- Aims
 - Understand the prediction accuracy of unsteady computation by comparing the unsteady computation with the steady computation.
 - Understand the dependency of turbulence model, grid, time step.
- Conditions
 - M = 0.168, $Re_c = 1.06 \times 10^6$, $T_{ref} = 310$ K
 - AoA = 11.05, 13.08deg

Unsteady (Case2)

CL-Alpha

Steady (Case1)

Surface streamline(11.05deg, Average)

Surface streamline(13.08deg, Average)

ARC

Wake interference with tail (11.05deg, Section YB, Average)

The attached cases are close to the experiment

Wake interference with tail (13.08deg, Section YB, Average)

The separated cases are close to the experiment

The separated cases are close to the experiment

Surface Cp distribution (Tail, Section HB-HC)

Surface Cp distribution (Tail, Section HB-HC)

Surface Cp distribution (Main wing, Section B'-D')

ARC

Summary

- The stall prediction is affected by the grid type (hexahedral/mixedelement unstructured grid, structured grid) and the boundary treatment (body-fitted grid, immersed boundary).
- The SST model predicts the stall at lower angle of attack than the SA model for various grids.
- The prediction of mild and partial separation that appears at 11deg is very challenging. The prediction of large separation at 13deg is improved by using the unsteady simulation. The variation of the predicted lift is reduced as compared with APC-6.
- The wake is diffused for the mixed-element grid that is relatively coarse between the main wing and the tail. However, for the other grids, the effect of the grid resolution on the wake profile is not clear since the wake profile is largely affected by the main wing separation.
- The rich PIV data enabled the detailed validation of threedimensional separated flow.