はやぶさ型カプセルの遷音速・低速域における空力安定性評価

山田和彦,高柳大樹,小野稜介,中尾達郎,丸祐介,小澤宇志,永田靖典(JAXA) 永井大樹(東北大学),高橋裕介(北海道大学)

Evaluation of aerodynamic stability in the transonic and low speed range of Hayabusa-type SRC

Kazuhiko Yamada, Hiroki Takayanagi, Ryosuke Ono, Tatsuro Nakao, Yusuke Maru, Takashi Ozawa, Yasunori Nagata (JAXA), Hiroki Nagai (Tohoku University), and Yusuke Takahashi (Hokkaido University)

1. 研究背景と試験の概要

JAXA では「はやぶさ」「はやぶさ2」に続き火星 衛星探査機(MMX)や彗星サンプルリターン計画 (CAESAR)などはやぶさ相似形状のサンプルリタ ーンカプセルを用いたミッションが計画されて いる.これらの計画におけるサンプルリターン カプセル(SRC)は「はやぶさ」のヘリテージを最 大限活用するために「はやぶさ」相似形状を選 択し,はやぶさ開発時に各種風洞試験結果を元 に作成された空力データベース いを用いたシミ ュレーションによって空力安定性の評価を行っ ている.直径1.5倍のはやぶさ型カプセルにお ける姿勢運動解析結果を図1に示す.

図1 直径1.5倍のはやぶさ型カプセルの 姿勢運動解析結果,迎角履歴

本解析結果より希薄領域では安定であり,ま た遷音速領域では最終的には,最大振幅 20deg,周波数2.7Hz程度のリミットサイク ルに入って飛行することがわかる.一方で, はやぶさ型サンプルリターンカプセルに対 する LES による動的シミュレーションの結 果によると直径が大きくなるにつれてカプ セル振動の最大値が大きくなることが示唆 されている².また大型化されたパラシュー トの放出,開傘,減速性能に関するモデルの 検証も必要である.これらは地上試験では完 全に再現することは不可能であり,自由飛行 試験における検証データを取得する必要が ある.そこで,本提案では大気球を利用し, 直径 60cm の「はやぶさ」カプセル相似形状 の実験機を製作し,高度 40km 程度から投下 し,遷音速から低速域の飛行挙動を取得する とともにパラシュート開傘時の開傘挙動の 計測を行う.

2. 目的

本気球実験においては、「はやぶさ」型(相似 形)のカプセルを、大気球により高度40km程度 まで上昇させて、そこから投下することにより、 サンプルリターンカプセルの大気圏突入におけ る最終フェーズ(遷音速領域の自由飛行から、 亜音速パラシュートでの緩降下)の実フライト 環境を再現する.その中で、実証すべき項目は、 主に下記の2点である.

- 1) 遷音速から低速域の空力挙動に関するデー タ取得
 - →はやぶさ型で直径 60cm のモデルにおい て、自由飛行中の空力挙動のデータ取得
 - →姿勢運動データの取得、特に、動的な空力 係数の同定
- パラシュート展開時のパラシュート放出過 程の挙動取得
 - →遷音速領域での姿勢運動を経た上でのパラ シュート展開シークエンスの実施
 - →パラシュート開傘時の衝撃荷重の取得および開傘過程の3次元形状計測
 - →パラシュートの空力係数の取得と緩降下中 の姿勢運動

これらの要求から遷音速領域での飛行が必須で あるため、マッハ数 1.1 を超えることは最低条 件であるが、実験の成果をより確実にするため には、遷音速領域を減速しながら通り過ぎるこ とが重要であるので、ユーザー側からはマッハ 数 1.3 程度まで加速できる高度からの投下を希 望する.投下軌道シミュレーションを用いた大 気球試験における投下高度とマッハ数の関係を 図2に示す.この結果から,最低でも高度38km 以上,できれば高度43km以上からの投下を希望 する.本試験を実施し,「はやぶさ」開発時の試 験結果と比較することで直径60cmのはやぶさ 型SRCの遷音速不安定性評価手法およびパラシ ュート開傘過程のモデル化を行う.

図2投下軌道シミュレーションによる 投下高度とマッハ数の関係

3. 想定している実験機の諸元

今回の試験では、実際のミッションに使われ るサンプルリターンカプセルと、同じ形状(「は やぶさ」カプセル相似形)、サイズ、重量特性、 減速装置の実験機を使用することを想定してい る.本試験で投下するカプセルの諸元を表1に まとめる.要求高度から、本試験に使用する気 球はB300を想定している.

	気球実験用供試体	
形状	はやぶさ相似形	
重量	46.8kg	
サイズ	0. 6m	
パラシュート	十字傘(一段式)	
EDL	高度 10km	
シークエンス	→パラシュート展開	
	→前背面ヒートシールド離脱	
必要高度	38km以上(M>1.1)	
(到達マッハ数)	43km以上(M>1.3)	
実施年	2023 年春季	

表 :投下するカフセルの諸

4. 実験手法

想定している実験シークエンスは、下記の通 りである.

- サンプルリターンカプセル実験機を搭載したゴンドラを要求高度(~40km 程度)まで 上昇.
- 2) 最高高度に到達後,実験機の健全性を確認. 試験準備コマンドを送信.
- ゴンドラ全体を回転し、5rpm(=30deg/s)で 安定に回転していることを確認.
- 地上からの指令で実験機を分離.実験開始. 分離時の様子をゴンドラ搭載カメラで撮像.
- 5) 自由落下で, 遷音速まで加速 (マッハ数 1.1 以上, できればマッハ数 1.3 以上).
- 自由落下中のカプセル挙動を測定(データ は、一部はテレメトリで送信し、詳細デー タは、実験機に搭載されたロガーに記録).
- 分離からのタイマーシークエンスで、EDL シークエンス(パラシュート放出、ヒート シールド分離)を実施.
- 8) パラシュートで緩降下し,着地.
- 第
 第
 第
 第
 8
 4
 4
 5
 5
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
- 10) 実験機本体と前面ヒートシールド,背面ヒ ートシールド,およびゴンドラを回収.

本試験においては、実験機は降下中にヒート シールドを離脱するため、実験機以外に、そこ から分離した背面ヒートシールド(+パラシュ ート収納袋),前面ヒートシールドの3点が降下 することになる.

本試験で想定しているゴンドラ形状を図3に, 製作したに示す.分離前にカプセルを回転させ るための回転機構はゴンドラの下に設置する. カプセルを回転させた際に気球も一緒に回って しまわないように気球とゴンドラの間にはラダ ーを設置する.カプセル背面側に設置されたワ イヤーカッターによって電線を切断することに よってタイマーをスタートさせる.飛行中のテ レメータはカプセル内部前面側に設置されたア ンテナから送信するとともに着地後のイリジウ ム通信に関してはカプセル内部の背面側に設置 したアンテナを用いて送信する.

5. 計測項目

本試験におけるインタフェースユニット (IFU)およびデータ記録ユニット(Frec-U)のシ ステムブロック図を図4,5に示す.フライトデ ータ(位置,速度,姿勢,運動,衝撃荷重,HKデ ータ)は,気球のテレメトリシステム(送信機) を実験機に搭載して,最低限のデータはリアル タイムで送信するのと併せて,実験機内のロガ ーに詳細データを記録する.位置情報に関して は,実験機に搭載したイリジウム SBD システム でも地上に送る.画像情報はゴンドラから分離 時の様子を撮像する.これは気球のテレメトリ システムによってリアルタイムでモニタする. また,実験機にもカメラを搭載し,パラシュー ト展開挙動を撮像する.このデータは,実験機 内にロガーに記録する.各計測に必要なセンサ を表2に示す.

図3 ゴンドラ形状案

図4:本システムの IFU システムブロック図

図5本	システムの	Frec-U	システ	ムブロ	ロッ	クド	ζ
-----	-------	--------	-----	-----	----	----	---

No.	計測項目	センサ	
1	位置, 速度	GPS, 気圧高度計, 絶	
		対圧計および差圧計	
2	姿勢,運動	9 軸(加速度,角速	
		度,磁場)センサ	
3	パラシュート	引張ロードセル	

耟	2	搭載ヤンサ-	-暫

	展開衝撃	
4	HKデータ	電源電圧・電流,各 部温度
5	画像	パラシュートの展開 挙動,分離時の状況 をモニタ

6. 実験準備状況

本気球実験用の概念設計案を図6に示す.内 部にフライトモデルと同等のパラシュートシス テムを搭載する.前面ヒートシールドおよび背 面ヒートシールドは透過率を考慮してアクリル を用いて製作する.製作したBBMを図7に示す.

図7 気球実験用 SRC 供試体 BBM

パラシュートシステムは、フライト機、及び、 実験機においてももっともクリティカルな部分 であり、パラシュート傘体、パラシュート放出 機構から構成される.パラシュート傘体は直径 が1.5倍になったカプセルを安全に減速させる ために図8に示すように「はやぶさ」よりも大 型化した十字傘を採用している.パラシュート の諸元を表3に示す.本パラシュートに関して は先に示すようにダミーヒートシールドおよび 構体を用いて収納確認試験を実施するとともに セスナからの投下試験および低速風洞試験を実 施し、抵抗面積の評価を行った.図9にセスナ からの投下試験時のパラシュートの様子を示す.

図 8:本カプセル用に設計したパラシュートの 概形図

図9:セスナからの投下試験の様子

パラシュート放出機構としては「はやぶさ」 で使用されたヒートシールド分離&パラシュー ト展開用の火工品機構と同様の機構を用いる予 定であるが、分離するヒートシールドのサイズ、 重量が「はやぶさ」より大きいため、薬量を1.5 倍にした能力向上版を開発する必要があり、BBM を試作し、蓋飛ばし試験を実施済みである.内 部電気回路は、フライト機と同じものは搭載せ ず、気球実験用に開発する予定であり、柔軟エ アロシェルの大気球実験、観測ロケット実験、 及び、超小型衛星 EGG 等で使用してきたシステ ムを流用する.実験機には、ペイロード(サン プラコンテナ)は搭載しないため、その部分に 計測機など、気球実験にのみ必要な機器を搭載 することになる.

分離機構はゴンドラ下部にカプセルを取り付け、最高高度到達後にワイヤーカッターを切断し、バネ鋼製のマルマンバンドを開放することでカプセルを分離する。製作したマルマンバンドを図10に示す。ゴンドラ残置機器は、気球の上昇中に必要な電源、回転分離機構、気球

MBOとの通信を行う IFU, 気球カメラである.

図 10:気球実験用マルマンバンド

回転機構は最高高度到達後,切り離し前にカ プセル全体を回転させるための機構である.図 11 に本回転機構の概念図を,図 12 に製作した BBM 外観図を示す.本回転機構に関しては恒温 真空槽を用いて-60 度,真空環境下においても 安定して 5rpm で回転できることを確認済みで ある.

図 11: 気球実験用回転機構概念図

図 12: 気球実験用回転機構概念図

参考文献

1) Hiraki, K., and Inatani, Y., "The Aerodynamic Data Base for Asteroid Sample Return Capsule," ISAS Report SP No. 17, pp. 345 – 363, 2003.

 2) 松山新吾,小澤宇志,"遷音速動的不安定に関する
 LES 解析",第63回宇宙科学技術連合講演会,徳島, 2019年11月.