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Abstract

This paper analyzes ballistic lunar transfers known as
chaotic orbits by using a data-driven approach called HA-
VOK (Hankel Alternative View of Koopman). HAVOK
is a method to decompose a chaotic dynamical system
into a linear model with intermittent forcing, and it has
a possibility to reveal the chaotic dynamical system. In
this analysis, chaotic orbits can be reconstructed by HA-
VOK, and the transport mechanism of them is clarified by
classifying the magnitude of the intermittent forcing. In
addition, the relation between the transport mechanism
obtained by HAVOK and the dynamical structure of the
circularly restricted three-body problem is revealed by pe-
riapsis Poincaré map.

1 Introduction

Recently, low-energy orbits called the ballistic lunar trans-
fers have attracted much attention for its use in actual
missions. The conventional method, Hohmann transfer,
has the disadvantage of high cost due to the need for in-
sertion burning. On the other hand, the ballistic lunar
transfers are achieved only by the gravitational attrac-
tions of the Earth, the Moon, and other planets, so they
don’t require orbit insertion maneuver, and have low cost
and high safety. In 1995, Bolt and Meiss found a chaotic
Earth-Moon transfer orbit that achieves ballistic capture
and that requires 38 % less total velocity boost than a com-
parable Hohmann transfer orbit.1 However, the ballistic
lunar transfers require a huge amount of time to reach
the Moon. In order to solve this problem, research has
been done on it, but the dynamics of ballistic lunar trans-
fers have not yielded many valid results, because the low-
energy transit from the Earth region to the Moon region
is caused by a chaotic process called lunar gravitational
capture (the phenomenon of temporarily staying near the
Moon). In 2006, Ross designed a lower cost orbit by con-
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sidering the invariant manifold of Lyapunov orbit around
L1.2 In addition, in 2017, Oshima designed an orbit that
considers the gravitational assist due to resonant orbits
in addition to the invariant manifold of Lyapunov orbit.3

This paper proposes a new approach to analysis by data,
which is different from such dynamical analysis.

Chaotic systems, which are also treated in this paper,
exist in every field of physics, biology, and engineering. For
example, planetary motion, weather, financial markets,
and epidemiology are known as chaotic phenomena. In
the fields of climate science and neuroscience, data-driven
analysis is actively pursued because the laws of physics
and governing equations are still unclear, although there
is a wealth of data. In classical fields such as turbulence,
where governing equations exist, data-driven analysis is
also being actively conducted.

DMD (Dynamic Mode Decomposition) is a method of
mode decomposition of a nonlinear system from time se-
ries data without using the governing equations.4 It was
developed in the field of fluid dynamics in 2016 by Kutz
et al, which can decompose high-dimensional, nonlinear
time series data obtained from dynamic systems into mul-
tiple modes with frequencies and decay rates. However,
although DMD is effective to obtain a global linear rep-
resentation of a nonlinear system, it is not sufficient to
describe a chaotic system with stronger nonlinearity. To
solve this problem, HAVOK (Hankel alternative view of
Koopman), a method to decompose chaotic systems into
linear models with intermittent forcing, was proposed by
Bruton et al. in 2017.5 Then HAVOK has been applied to
various chaotic systems such as EEG, double pendulum,
and measles. By applying, a linear representation of the
chaotic system was obtained, and as a result, the chaotic
phenomenon was successfully predicted.5 Thus, obtaining
a global linear representation of a chaotic system is an
innovative possibility.

This paper applies HAVOK to the chaotic orbits of
the circularly restricted three-body problem of the Earth-
Moon system, and brings new insights to the analysis and
design of ballistic lunar transfers. First, the chaotic orbit
is modeled as the linear regression model to indicate the
usefulness of HAVOK. Next, the transition mechanism is
clarified by analyzing the input of HAVOK. Moreover, a
comparison with the analysis using the dynamical struc-
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ture is conducted to investigate what the input means in
terms of dynamics.

2 theory

2.1 DMD

DMD is a data-driven method for mode decomposition of
a nonlinear system from time series data without using
governing equations. Therefore, it enables the analysis,
prediction, and control of nonlinear dynamical systems.4

DMD linearizes the time series data xk by constructing
the state transition matrix A as shown equation (1).

xk+1 = Axk (1)

DMD uses the time series data xk of the nonlinear dy-
namical system and stores it in the matrix X, X ′ by shift-
ing it by one step as follows.

X =

 | | |
x1 x2 . . . xm−1
| | |

 (2)

X′ =

 | | |
x2 x3 . . . xm
| | |

 (3)

By equation (1),

X ′ = AX (4)

Using the pseudo-inverse matrix X†,

A = X ′X† (5)

In this way, the state transition matrixA is computed by
least-squares. By finding the eigenvalues and eigenvectors
of A, the mode of the system can be determined.

2.2 HAVOK

HAVOK analysis provides a data-driven decomposition of
chaotic dynamical system into a forced linear system.5 In
HAVOK analysis, time-delay embedding of the time-series
data is used by applying singular value decomposition to
a Hankel matrix as shown Fig.1. Eigen-time-delay coordi-
nates are obtained from a time series data x(t) by taking
a singular value decomposition of the Hankel matrix:

H =


x(t1) x(t2) · · · x(tp)
x(t2) x(t3) · · · x(tp+1)

...
...

. . .
...

x(tq) x(tq+1) · · · x(tp+q−1)

 = UΣV ∗ (6)

Then a linear model is constructed on the first r− 1 vari-
ables and let the last variable, vr, to act as a forcing term:

d

dt
v(t) = Av(t) +Bvr(t) (7)

where v = [v1 v2 · · · vr−1]T is a vector of the first r − 1
eigen-time-delay coordinates. The r-th coordinate vr is
used an input forcing to the linear dynamics, which serves
as a driven force of a chaotic behavior. The matrices A
and B in the linear regression model (7) can be obtained
by the standard dynamic mode decomposition (DMD) al-
gorithm4 or other algorithms, such as Sparse Identification
of Nonlinear Dynamics (SINDy).6

Figure 1: Procedure for obtaining the time delayed em-
bedded attractor.5

2.3 Circular restricted three-body prob-
lem

The equations of motion of the circular restricted three-
body problem (CRTBP) of are expressed by7

ẍ− 2ẏ =
∂U

∂x

ÿ − 2ẋ =
∂U

∂y
(8)

z̈ =
∂U

∂z

where U is the potential function defined by

U =
1

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2

r1 =
√

(x+ µ)2 + y2 + z2

r2 =
√

(x− 1 + µ)2 + y2 + z2

x, y, and z are the position components of the spacecraft,
r1 and r2 are the distances of the spacecraft with respect
to the Earth and Moon. Given the masses of Earth and
Moon by mE and mM respectively, the mass parameter µ
is given by µ = mM

mE+mM
. Integral of motion exists in the

CR3BP, which is called Jacobi constant and is given by

C = 2U − (ẋ2 + ẏ2 + ż2) (9)

3 Results

3.1 Analysis of chaotic orbits by HAVOK

This section shows the result of applying HAVOK to the
chaotic orbits in the circularly restricted three-body prob-
lem of the Earth-Moon system. First, solve the equation
(8) with the initial condition (10) to obtain the orbit data
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(Fig.2). From the equation (9), C = 3.1726. This or-
bit starts from the Earth regions, and then transits to the
Moon regions by using the chaotic transition phenomenon.
The orbital data with chaotic behavior is used for this
analysis. 

x(0)
y(0)
z(0)
ẋ(0)
ẏ(0)
ż(0)

 =


0.73
0.27

0
0
0
0

 (10)

Figure 2: Chaotic orbit as data.

Next, the time delayed embedding attractor that is
topologically equal to the original trajectory is obtained
in order to build a linear regression model. First, one-
dimensional time series data (distance from the Earth,
r =

√
(x+ µ)2 + y2) is extracted from four-dimensional

orbit data in Fig.3. Next, by stacking the time series data
of r, the Hankel matrix shown in equation (6) is obtained.
At this time, from the Takens embedding theory,8 it is
sufficient to have (2× 4 + 1 =) 9 rows of time series data
to stack. Then, the Hankel matrix is decomposed into
singular values. The elements of V T obtained by singu-
lar value decomposition are shown in (11). The singular
value decomposition allows extracting the modes with the
highest contribution to reconstructing the original orbit,
and the delayed embedding attractor can be obtained by
plotting the most dominant first and second lines in Fig.4.
The attractor in which the positions of the Earth and the
Moon are inverted is obtained.

V T =


v1(t1) v1(t2) v1(t3) · · · v1(tp)
v2(t1) v2(t2) v2(t3) · · · v2(tp)

...
...

...
. . .

...
vq(t1) vq(t2) vq(t3) · · · vq(tp)

 (11)

Next, construct the linear regression model of the
chaotic trajectory using V T . The data of V T is shifted
by one step and stored in X and X ′, and the state tran-
sition matrix A is calculated by the least-squares method
with X ′ = AX. Then, the forced input vr is explained.

Figure 5 shows the time-series data for each row of V T . It
can be seen that the mode is intermittent after v4. Hence,
v4 is considered as the forcing input. Finally, classify the
state transition matrix A into the A, which makes accu-
rate linear predictions, and the B, which corresponds to
the forced input v4, and construct the linear regression
model with the forcing term as in the equation (12).

 v1
v2
v3


k+1

= A

 v1
v2
v3


k

+Bv4 (12)

A =

 1.0000 0.0005 0.0000
−0.0005 1.0000 0.0037
0.0000 −0.0037 1.0000

 , B =

 0.0000
0.0000
−0.0163


(13)

Figure 3: Time series data of
r.

Figure 4: time delay embed-
ding attractor.

Figure 5: Time series data from v1 to v6.

3.2 Transition mechanism of the chaotic
orbit

Here is the reconstruction of the time delayed embedding
attractor by the linear regression model. First, in order to
confirm that the chaotic transition phenomenon is caused
by the forced input, the time delayed embedded attractor
is reconstructed by the equation excluding the forced term
in the second term of equation (12) in Fig.6(a). This at-
tractor converges to the origin because the magnitude of
the eigenvalues of the state transition matrix A is smaller
than 1.

3
This document is provided by JAXA.



Next, the time delayed embedding attractor is recon-
structed by equation (12) including the forcing term in
Fig.6(b). Then, the Earth region and the Moon region
can be distinguished, and the transition phenomenon can
be confirmed. This indicates that the forcing input con-
tributes to the chaotic transition phenomenon.

(a) Without forcing term. (b) With forcing Term.

Figure 6: Reconstructing the time delayed embedded at-
tractor with linear regression models.

In order to investigate how the forced input v4 affects
the trajectories, the input is divided into four categories
according to its amplitude and period. Figure 7 shows
the color classification of the forcing input. The black
represents the large input, the blue represents the subtle
input, the red represents the small input, and the pink
represents the input at the Moon. Next, the time delayed
embedded attractor (Fig.6(b)) reconstructed by the linear
regression model(12) is colored at the same time in Fig.8.
The bold line indicates the location where the input is ac-
tive. First, it starts from the black trajectory and moves
outward with the large input. Next, it moves to the inner
blue trajectory, where it receives the subtle input. Then it
moves to the middle red trajectory with the small input.
Finally, it transitions from the red trajectory to the moon.
In conclusion, the transition mechanism on the time de-
layed embedding attractor is that it goes from the outside
to the inside, passes through the middle trajectory, and
then transitions to the Moon. Finally, the actual orbits
are also colored in the same way and shown in the Fig 9.
The forcing input is due to the gravitational effects of the
two objects, since no velocity change is added to the anal-
ysis. The large black input occurs near the Earth, and the
small blue input occurs far away from the Earth. The or-
bit that receives the small red input is in the middle of the
two orbits. In the actual orbit, the transition mechanism
was found to be from a near-Earth orbit to a far-Earth
orbit, then to the middle orbit, and then to the Moon.
Furthermore, Figure 10 propagated the orbit longer and
colored it in the same way. It shows that the relationship
between the color and the distance from the Earth is the
same. In this orbit, the black orbit near the Earth and the
blue orbit far from the Earth do not transit to the Moon
region.

Figure 7: Color classification
of v4.

Figure 8: Color classification
of the time delayed embed-
ding attractor by input.

Figure 9: Color coding of the
orbit.

Figure 10: Color coding of
the longer orbit.

4 consideration

In this section, in order to investigate the dynamical im-
plications of the forced input, a comparison with previous
studies on dynamical analysis is conducted. Therefore,
tube dynamics and lobe dynamics, which are the dynami-
cal structures in the circularly restricted three-body prob-
lem, are introduced.

4.1 Tube Dynamics and Lobe Dynamics

Focusing on the unstable L1 among the equilibrium points,
and obtain a periodic orbit called the Lyapunov orbit
around L1 with the same Jacobi constant. Then, extract
the structure of the phase space called the invariant man-
ifold extending from the Lyapunov orbit. Periodic orbits
and invariant manifolds are important structures such as
”tube” that determine the flow of orbits in the phase space
of dynamical systems with embedded chaotic orbits. In
other words, an orbit with state quantity inside the tube
transits through the tube to the Moon without the thrust.

In order to use the tube structure, it is necessary to
raise the altitude of the spacecraft to the region where the
tube exists. Resonant gravity assist is one of the meth-
ods to achieve this. By using a resonant state in which
the period of the object and the spacecraft is expressed
by a simple integer ratio, multiple gravity assists can be
performed in a short time, and the semi-major axis of the
spacecraft around the Earth can be increased up to the
existence of the tube. Figure 12 and 13 show the reso-
nant orbit with the ratio of the period of the moon and
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spacecraft of 1:3 and 2:5. Then, the region surrounded by
the stable and unstable manifolds of the resonant orbit is
called Lobe, and the orbit with the state quantity inside
Lobe can change the semi-major axis a efficiently due to
the lunar gravity assist.

Figure 11: Stable manifolds (tube) extending from Lya-
punov orbits.

Figure 12: 1:3 resonant orbit. Figure 13: 2:5 resonant orbit.

4.2 Periapsis poincaré map

To distinguish whether the state quantity of an orbit are
inside the tube and Lobe, the periapsis map is used. The
periapsis map is an analysis method that extracts informa-
tion at the periapsis (ṙ = 0) of the orbit. Radial velocity
ṙ is expressed by

ṙ =
d

dt
(
√

(x+ µ)2 + y2 + z2) (14)

=
(x+ µ)ẋ+ yẏ + zż√

(x+ µ)2 + y2 + z2

In the periapsis map, the vertical axis is the semi-major
axis a in the Earth region, and the horizontal axis is the
angle θ between the x-axis and the spacecraft centred on
the Earth. θ is expressed by

θ = tan−1(
y

x+ µ
) (15)

Therefore, the radial velocity vr and the tangential ve-
locity vθ in the inertial coordinate system are

vr = ẋ cos θ + ẏ sin θ (16)

vθ = r1 − ẋ sin θ + ẏ cos θ (17)

Hence, semi-major axis a is expressed by

a =
r1(1− µ)

2(1− µ)− r1(v2r + v2θ)
(18)

Figure 14 shows the periapsis map. The orange points
indicate the periapsis obtained by propagating multiple
orbits with the same Jacobi constant as the analyzed orbit.
The initial values for multiple orbits are


x(0)
y(0)
z(0)
ẋ(0)
ẏ(0)
ż(0)

 =



x
1.0× 10−6

0
0√

(x(0)
2

+ (y(0)
2
) +

2(1− µ)

r1
+

2µ

r2
− C

0


(19)

Figure 14 indicates that the regions can be classified
into torus and discrete. Then the orbits obtained from the
former region are periodic orbits, and the orbits obtained
from the latter region are chaotic orbits. Moreover, Figure
14 shows the periapsis of the various orbits. The pink
points indicate the periapsis of the tube. The ten triangle
points indicate the periapsis of the analyzed orbit until
the transition to the Moon, and are color-coded according
to the magnitude of the forcing input for HAVOK. The
green points indicate the periapsis of the resonant orbit
for each resonance ratio. From fig.14,it can be confirmed
that the 10th periapsis is inside the tube, indicating that
the analyzing orbit uses the tube structure to transition
to the Moon.

Next, in Fig.15 and Fig.16, the 1:3 and 2:5 lobes are
drawn on the periapsis map. The green and red points
respectively show the periapsis of the stable and unstable
manifolds of the resonant orbit. In other words, the re-
gion surrounded by red and green points is the lobe. From
these figures, it can be seen from Fig.15 that this orbit is
not obviously inside the 1:3 lobe, but from Fig.16, the 2:5
lobe is used to convert the semi-major axis a. In detail,
it can be seen that the color classification based on the
magnitude of the forcing input corresponds to the trans-
port structure of the semi-major axis a due to the lobe
dynamics. In other words, it is clear that the forced in-
put obtained by HAVOK models the “resonant hopping”
phenomenon9 due to lobe dynamics in terms of dynamics.
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Figure 14: The periapsis Poincaré map of the multiple
orbits (C = 3.1726).

Figure 15: 1:3 lobes.

5 Conclusion

This paper applied HAVOK, a data-driven approach, to
chaotic orbits in the Earth-Moon system and provided new
insights into the low-cost trajectory design for ballistic lu-
nar transfers. HAVOK enabled the chaotic trajectory to
be decomposed into a linear model with a forcing term,
therefore the usefulness of HAVOK in chaotic dynamical
systems is demonstrated. Moreover, since the forcing in-
put contributes to the chaotic transition phenomenon, by
classifying the magnitude of the forcing input, it was found
that the chaotic orbit has the transition mechanism. Fur-
thermore, comparison with the dynamical analysis using
the periapsis poincaré map showed that the forced input
models the transport structure with changing semi-major
axis a due to lobe dynamics.

The data-driven approach has the possibility to identify
the underlying structure of complex dynamical systems
and it helps to design transfer trajectories in the multi-
body regime. It also has the possibility to address other
challenges in the astrodynamics field, such as complex tra-
jectory design, control and optimization.

Figure 16: 2:5 lobes.
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