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Quasi-satellite orbits (QSOs) are stable retrograde orbits in the restricted three-body problem that have gained attention as a viable
candidate for future deep-space missions towards remote planetary satellites. JAXA’s robotic sample return mission MMX will utilize
QSOs to perform scientific observations of the Martian moon Phobos before landing on its surface and attempt sample retrieval. The
complex dynamical environment around Phobos makes the proximity operations of MMX immensely challenging and requires novel
and sophisticated techniques for maintaining and transferring between different quasi-satellite orbits. The present paper explores the
bifurcated families of QSOs around Phobos for the proximity operations by leveraging dynamical systems theory and using invariant
manifolds of unstable retrograde orbits to design transfer trajectories around Phobos. Starting from the equations of the Circular
Hill Problem with ellipsoidal Phobos, we first compute families of bifurcated QSOs using in-plane and out-of-plane bifurcations near
planar orbits. Through bifurcated families of QSOs, we introduce two novel transfer strategies in the vicinity of Phobos. Later on, the
feasibility of using unstable family members as staging orbits between high- and low-altitude QSOs is evaluated. The final candidates
are ranked based on MMX scientific requirements, transfer analyses, and station-keeping costs. It is found that intermediate 3D-QSOs
can be maintained with as little as 1 m/s per month. Furthermore, it is discovered that transfer from high-altitude QSOs to low-altitude
QSOs can be executed with a total ∆V of less than 40 m/s and the total time of flight of less than 5 days.
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1. Introduction

Deep space missions towards remote planetary satellites such
as the Martian moons Phobos and Deimos can provide scientists
with invaluable clues on the birth and evolution of our solar sys-
tem. Exploring the Martian moons would shed light on the for-
mation of these satellites, thereby answering whether Phobos
and Deimos are captured type-D asteroids or fragments that in-
terfused after a planetesimal collision with Mars. In terms of
mission concepts, Phobos has also been considered as a natu-
ral space station that can be utilized by future crewed Martian
missions to monitor and control robotic assets on the surface
of Mars. Several dedicated missions in the past, such as Soviet
Phobos 1, Phobos 2, and Phobos Grunt, have never or partially
been successful.1) The Japan Aerospace Exploration Agency
(JAXA) is currently planning a robotic sample return mission
known as the Martian Moons eXploration (MMX), scheduled
for a 2024 launch.2) The goal of the MMX mission is to ex-
plain the moons’ origin and provide insights into the evolu-
tion of Mars and other small bodies in the Solar system. The
current mission plan of MMX involves an interplanetary phase
followed by a Mars orbit insertion phase, a Phobos proximity
phase, and surface operations to perform descent and landing
operations.2, 3)

The dynamical environment around Phobos is unique com-
pared to other planetary systems.4) Therefore, a simple two-
body approximation with Mars is not appropriate to describe
the dynamics in the vicinity of Phobos. Indeed, the size of
the Martian moon is enough to perturb two-body motion during
the proximity phase and make spacecraft operations quite chal-
lenging. MMX envisions utilizing quasi-satellite orbits (QSO)
to characterize the dynamical environment of Phobos for ade-

quate landing site selection and relatively safe spacecraft oper-
ations. QSOs are stable three-body orbits that demand lower
orbit maintenance costs over long mission periods. For these
reasons, QSOs have gained much attention over the past decade,
becoming the subject of several studies found in literature.5, 6)

This paper explores the bifurcations of QSOs and proposes
novel transfer methodologies for transfers between relative
QSOs in the proximity of Phobos. In particular, we utilize
MMX baseline QSOs for mission design applications. During
the proximity operations, the spacecraft will gradually descend
from a high-altitude QSO towards a lower altitude orbit with
suitable transfer techniques. It is also envisaged that MMX
will fly on spatial retrograde orbits (hereafter referred to as 3D-
QSOs) to assist with the scientific observations of Phobos and
enable global coverage.2)

Despite studies on transfers between liberation point orbits
and planet-centred orbits towards QSOs can be found in the lit-
erature,7, 8) the problem of transferring between relative planar
QSOs and planar to 3D-QSOs is still open to debate. Literature
on transfers between relative planar QSOs includes the work of
Russell,9) Ichinomiya et al.,10) and Pushparaj et al.11, 12) Rus-
sell utilizes primer vector theory and low-thrust trajectories to
maneuver satellites in the Jupiter-Europa and Earth-Moon sys-
tems. Ichinomiya et al.10) applied Lam’s and Whiffen’s ap-
proach to design transfers between planar QSOs in the Mars-
Phobos CRTBP.13) This work presents an improved approach to
this methodology by considering the Circular Hill Problem with
ellipsoidal secondary and developing a transfer methodology
via multi-revolution in-plane bifurcations of planar QSOs. We
also consider vertical QSO bifurcations to design 3D-QSOs and
assess their feasibility as staging orbits between high-altitude
and low-altitude trajectories around Phobos. The advantages of
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our approach are two-fold: 1) MMX mission intends to insert
the spacecraft into an out-of-plane 3D-QSO in the mid-altitude
region for comprehensive coverage of Phobos’ high latitude
regions. 2) 3D-QSOs can be mildly unstable, thus enabling
the exploitation of stable and unstable manifolds to implement
cheap transfer opportunities near the Martian moon.

We first calculate families of 3D QSOs that bifurcate from
the planar and stable family using principles of dynamical sys-
tems theory. In-plane and Out-of plane bifurcations of peri-
odic orbits were first studied by Robin and Markellos.14) Later,
Lara et al. used similar bifurcation methods to explore distant
stability regions around Europa.15) Vaquero and Howell16) de-
signed 3D resonant orbits bifurcating from planar resonant pe-
riodic families in the Sun-Earth CRTBP. Oshima and Yanao17)

applied the same bifurcation theory to calculate spatial QSOs
and study their application in the bi-circular four-body prob-
lem of Sun-Earth-Moon system. More recently, Chen et al.18)

studied the effective stability of bifurcated 3D-QSOs for Pho-
bos exploration. Transfers between planar and spatial QSOs
were only studied by Canalias et al.,19) whereby single impul-
sive maneuvers were implemented in order to insert from mid-
altitude QSOs into their spatial and out-of-plane counterpart.
Differently from previous studies, we thereby propose trans-
fer methodologies that utilizes the bifurcated families of QSOs
and their associated invariant manifolds to design in-plane and
out-of-plane transfer trajectories connecting planar and stable
QSOs. Considering the number of candidate solutions, we have
also implemented a simple station-keeping strategy to rank 3D-
QSOs and aid MMX mission designers in selecting the best pos-
sible candidate for proximity operations and global coverage.

2. Background

The general problem of satellite and particle dynamics about
a tri-axial ellipsoid with constant density model is considered.
The tri-axial ellipsoidal model of Phobos can be framed by
specifying the physical parameters of the smaller body as fol-
lows. The largest semi-major axis constantly points along the x-
axis, intermediate semi-major axis along the y-axis, and small-
est semi-major axis along the z-axis. It is assumed that Phobos
orbits around Mars in a tidal-locked configuration. As a result,
the tri-axial ellipsoid representing the surface of the Martian
moon does not rotate with respect to the Mars-Phobos synodic
reference frame.

2.1. Model Specification and Gravitational Potential
The irregular gravity field of Phobos can be approximated

using an ellipsoidal model with three major axes: α, β, and γ.
Assuming constant density σP, the gravitational parameter of
Phobos is computed as20, 21)

µP =
4π
3

GσPαβγ. (1)

where G, is the gravitational constant 6.674 × 10−8cm3g−1s−2

and 4π
3 αβγ is the volume of the ellipsoid. The gravitational po-

tential of a constant density tri-axial ellipsoidal Phobos model
at a point x, y, z, is given by

U(x, y, z) = −µP
3
4

∫ ∞
0
ϕ(x, y, z, u)

dl
∆(l + Λ)

, (2)

where

ϕ(x, y, z, l + Λ) =
x2

α2 + l + Λ
+

y2

β2 + l + Λ
+

z2

γ2 + l + Λ
− 1,

(3)

∆(l + Λ) =
√

(α2 + l + Λ)(β2 + l + Λ)(γ2 + l + Λ). (4)

µP is the gravitational parameter of Phobos from the Eq.(1),
whereasΛ is defined as either to be zero or the real positive root
of ϕ(x, y, z, l + Λ) = 0, depending on whether the gravitational
attraction of Phobos is computed internally or externally of the
body. The physical properties of Phobos are provided in.22)

2.2. Equations of Motion
Since the gravitational parameter of Phobos is significantly

smaller than the gravitational parameter of Mars and the rel-
ative distance between the spacecraft and Phobos is signifi-
cantly smaller than the distance between Mars and its moons,
the differential equations governing the motion of mass par-
ticles around Phobos can be well approximated via the Hill
approximation of the Circular Restricted Three-Body Problem
(CRTBP).21, 23) The Hill Problem’s (HP) equations of motion
are defined in a rotating reference frame located at the barycen-
ter of the secondary.

ẍ − 2ẏ = gx + 3 x,
ÿ + 2ẋ = gy,

z̈ = gz − z.
(5)

Here, G⃗a = [gx, gy, gz]T is the normalized acceleration due to an
attracting ellipsoidal mass and it is given by

gx = −
3
2
µPx
∫ ∞

0

( 1
α2 + l + Λ

) dl
∆(l + Λ)

, (6)

gy = −
3
2
µPy

∫ ∞
0

( 1
β2 + l + Λ

) dl
∆(l + Λ)

, (7)

gz = −
3
2
µPz
∫ ∞

0

( 1
γ2 + l + Λ

) dl
∆(l + Λ)

. (8)

Equations (2) and (6-8) are elliptic integrals which can be
rapidly approximated using numerical procedures.24) It is also
worth noting that the equations of motion Eq.(5) admit an inte-
gral of motion known in the literature as the Jacobi integral and
expressed as

C =W(r) −
1
2

(ẋ2 + ẏ2 + ż2), (9)

where W(r) =
1
2

(3 x2 − z2) + U(r) is the effective potential
of the system, and U(r) is the normalized acceleration due to
an attracting ellipsoidal mass. Bifurcation analysis and key dy-
namic properties of distant retrograde orbits or quasi-satellite
orbits (QSO) will be reviewed in the next section.
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3. Bifurcated Quasi-Satellite Orbits

In this research, Phobos is assumed to move around Mars
in a circular orbit with semi-major axis aP = 9377 km. If we
momentarily neglect its gravitational attraction, a spacecraft on
an eccentric orbit with the same semi-major axis would remain
in the vicinity of the Martian moon and describe purely peri-
odic orbits with respect to the co-rotating frame of the plane-
tary satellite. More specifically, spacecraft would describe 2:1
ellipses centered on Phobos and with period equal to its orbital
period around Mars (7.66 hrs) as prescribed by the analytical
solution of the Hill-Clohessy-Wiltshire (HCW) equations.25)

If we now consider the gravitational attraction of Phobos, the
closer spacecraft to the surface of the Martian moon, the higher
the gravitational influence of the planetary satellite on the rel-
ative trajectory of the spacecraft. Because of this perturbation,
lower altitude QSOs are usually computed via differential cor-
rector techniques that search for purely periodic orbits while
migrating inwards from high-altitude 2:1 ellipses that are less
affected by the gravity of the planetary satellite.

Fig. 1. Time Period vs positive x-axis crossing of the QSO
family branch.

In this research, we have utilized pseudo-arclength contin-
uation method of Mittelmann26)and shooting methods for cal-
culating families of QSO as shown in the Fig.1. The current
mission design of MMX envisages the utilization of different
altitude planar QSOs in order to characterize the gravitational
field before landing on Phobos. Key features of these baseline
trajectories are tabulated in Table 1.27)

Table 1. MMX Candidate QSO.
Name x × y (km) ẋ × ẏ (m/s) T (hrs) C (−)

QSO-H 100 × 198.47 45.74 × 22.95 7.59 −8.78
QSO-M 50 × 94.41 23.41 × 12.04 7.13 −2.20
QSO-La 30 × 48.83 15.31 × 8.68 5.76 −0.78
QSO-Lb 22 × 30.81 12.79 × 8.25 4.40 −0.37
QSO-Lc 20 × 26.69 12.31 × 8.31 3.97 −0.27

3.1. Stability and Bifurcation analysis
The QSO family branch obtained through the pseudo-

arclength continuation method29) is shown in Fig.2 with vari-
ations due to dynamical models. The bold line represents the
QSO family in the ellipsoidal gravity model, and the dotted line

represents the QSO family in HP point mass model, respec-
tively. Fig.2 also illustrates the stability indices of the QSO
family branch computed from Eq.(10).28)

b j ≡ λ j +
1
λ j
, j = 1, 2, (10)

where λ j and 1/λ j are jth reciprocal eigenvalues pairs of mon-
odromy matrix, M.

Fig. 2. Stability indices of planar QSO families.
(−2 < b j < 2 indicates periodic orbits are linearly stable)

As shown by the linear analysis, QSOs are linearly stable.
We bifurcate from the planar QSO family using their stability
indices as indicated in Eq.(11),

bRes = 2 cos 2π
d
n
, d, n ∈ N (11)

where d and n are integer numbers.14) Note that the integer ‘d’
indicates a near-commensurability of period between the orbit
at the point of bifurcation and the rotation of the coordinate
system,15) whereas ‘n’ denotes the multiplicity of a periodic or-
bit, i.e., the number of revolutions around Phobos. Following
Robin and Markellos14) and Lara et al.,15) families of multi-
revolution periodic orbits can be found near stable QSOs when
bRes reaches any resonant value (d/n). Bifurcation points are
detected using a bisection method on the curves of Fig. 2.

Let x∗0 and T ∗ be the initial state and orbital period of the
bifurcation point. Once a positive x-axis crossing has been ob-
tained, its corresponding QSO orbit is calculated leading to an
accurate estimate of x∗0 and T ∗. In addition, the monodromy
matrix of the newly found QSO is multiplied for n times and di-
agonalized to approximate the direction of the researched d : n
bifurcated QSO family tangent. We consider Z̃∗0 = x̃′0, T̃

′T
be

the family tangent of the bifurcated QSO family, where x̃′0, T̃
′T

are unit tangential state vector and propagation time to the solu-
tion curve at Z∗0 = x∗0,T

∗T as shown in Fig. 3. This bifurcation
analysis reveals that there are two families of QSOs emanating
from each bifurcation point (pitchfork bifurcation). These two
branches will be referred to as “symmetric” and “asymmetric”
bifurcated QSOs depending on whether the radial velocity (ẋ0)
of the predicted initial point, namely x0 = x∗0 ± ε x̃

′

0, is equal
or not to zero. To enforce the “symmetric” condition, we add
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Fig. 3. Schematic of Pseudo-arclength continuation.

an additional constraint on the initial radial velocity of the bi-
furcated QSO and run a pseudo-arclength continuation proce-
dure26) that generates bifurcated in-plane QSO, and z , 0 and
ż = 0 for bifurcated out-of-plane family branches from the ini-
tial conditions from Eq. (12) and family tangent Z̃∗0 .{

x0 = x∗0 ± ε x̃′0,
T = n T ∗ ± ε T̃ ′, (12)

The variable ε is a small parameter, we used ε = 10−4, whose
magnitude can be adjusted throughout the continuation process
to control the number of family members being computed.

Periodic orbits bifurcating via in-plane perturbations are re-
ferred to as swing QSOs or Multiple revolution Periodic QSOs
(MP-QSOs), whereas the members bifurcating from out-of-
plane perturbations are Spatial QSOs or 3D-QSOs.

4. Phobos Proximity Phase of MMX

This section introduces two transfer methodologies utilizing
the bifurcated families of QSOs to explore the Martian moon,
Phobos. The current mission plan of MMX envisages utiliz-
ing three QSOs at different altitudes, in order to gradually char-
acterize the gravitational environment of Phobos and selecting
the adequate landing sites. As the accuracy of the model of the
gravity field of Phobos is improved, the spacecraft will descend
to lower altitude QSO with increased reliability of the naviga-
tion system. In particular, MMX will be transferred from high
to low-altitude QSOs (i.e., x = 100 km to 20 km) using the
following sequences: QSO-H→ QSO-M; QSO-M→ QSO-La;
QSO-La → QSO-Lb; QSO-Lb → QSO-Lc (refer Table 1 for
the QSO specifications).

4.1. Out-of-plane transfer
In this subsection, we use 3D-QSOs computed from the out-

of-plane bifurcations of the planar QSO family. T In this study,
we propose and demonstrate an out-of-plane transfer method-
ology using the invariant manifolds of the 3D-QSOs(unstable).
The invariant manifolds of a 3D-QSO are computed by perturb-
ing the states along the direction of 3D-QSO’s local eigenvec-
tors. Stable and Unstable invariant manifolds originating from
various regions along the unstable 3D QSOs are characterized
using numerical computation on multiple nodes of the periodic
3D QSO.

To demonstrate the transfer methodology, we consider high-
and low-altitude QSOs from the MMX baseline orbits, hereby
referred to as QSO-H (Ax = 100 km) and QSO-La (Ax = 30
km), respectively. Firstly, a 3D-QSO-M (mid-altitude 3D-QSO)
of desired Az is identified (Fig.??). Secondly, we select 2000
equidistant nodes along the required unstable 3D-QSO-M and
compute the local eigenvectors at each nodes to generate cap-

ture and escape trajectories. Finally, once stable and unsta-
ble manifolds are computed, we connect stable manifolds with
QSO-H and unstable manifolds with QSO-L. This transfer pro-
cedure requires two transfer stages as illustrated in Fig.4.

Fig. 4. Transfer stage illustration showing manifolds extraction
from oblate cylinders passing through QSO-H and QSO-L.

The computed stable and unstable manifolds are discontin-
ued during propagation while crossing an oblate cylinder pass-
ing through the QSO-H and QSO-L (See Fig.4). Capture trajec-
tories are halted when they pass through QSO-H oblate cylinder
and these final states are further refined to extract trajectories
that intersect QSO-H at |z| ≤ 10−5. The refined trajectories al-
low us to calculate the ∆V s and TOF s from the departing planar
QSO-H. Varying the number of nodes and changing the energy
of the 3D-QSO provides better z = 0 crossing trajectories and
lower ∆V s. Similarly, escape trajectories from the same 3D-
QSO-M are halted when they pass through the QSO-L oblate
cylinder and the manifolds intersecting the QSO-L are recorded
and extracted further to obtain ∆Vu and TOFu at arriving pla-
nar QSO-L. Looking for feasible transfers between QSO-H and
3D-QSO-M, we investigated several cases of mid-altitude 3D-
QSO families of different Az ∈ [70, 120] km and applied our
transfer methodology.
4.1.1. Application to MMX

Combining the results of Transfer stage 1 and 2 could inform
MMX mission designers on 3D-QSOs that would enable opti-
mal transfers (in terms of either ∆V or TOF) between QSO-H
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Table 2. MMX Injection Errors

Standard Deviation Value Unit
σx, σy, σz 100 m
σẋ, σẏ, σż 3 cm/s

and QSO-L. However, such an analysis would not take into con-
sideration the orbit maintenance costs required to operate the
spacecraft at higher latitudes and collect precious images for
the global coverage of Phobos. To better inform the selection
of baseline 3D-QSOs, we have implemented an orbital main-
tenance approach that suppresses and eliminates the growth of
the relative error along the unstable eigenvector of a 3D-QSO.
Nakamiya and Kawakatsu30) used this approach to estimate or-
bital maintenance of Halo orbits in the Sun-Earth system to
eliminate unstable components under thrusting constraints.

Following the Hamiltonian nature of the system Eq.(5), the
eigenvalues of the monodromy matrix, M must occur in recip-
rocal pairs. In the case of 3D-QSOs, the unstable eigenvalues
(λ1) cause neighboring trajectories to diverge from the desired
periodic path. As a result, impulsive maneuvers should be im-
plemented to nullify the exponential growth of the relative error.
It is assumed that these initial errors are distributed according
to zero-mean Gaussian distributions with standard deviations
as reported in Table 2. Under the assumptions of our numerical
simulation, it appears from the Table 3 that the orbital main-
tenance cost for the 1:27 3D-QSO with Az = 120 km is the
cheapest among the candidate orbits, with an estimated max-
imum correction maneuver vcm cost of 0.584 m/s for 30 days.
In contrast, the most expensive orbit turned out to be the 1:17
3D-QSO (Az = 70 km) with a total vcm cost of 0.937 m/s per
month. All of the 3D-QSOs have orbital maintenance costs be-
low 1 m/s per month, resulting in a plethora of valid candidate
orbits for the global coverage of Phobos. This analysis suggests
that the orbit maintenance costs of 3D-QSOs may play a mi-
nor role in driving the selection of an optimal staging orbit for
transfers between high-altitude and low-altitude orbits around
Phobos. Overall transfer cost including the station-keeping cost
of mid-altitude QSOs are tabulated in Table 4. Note that ‘-’ in-
dicates no transfer connection (escape and capture trajectories
of 3D-QSO) between QSO-H and La.

The minimum overall ∆V t(∆V s + ∆Vu) and TOF t(TOF s +

TOFu) transfer solution cases are shown in Fig.5 and 6, respec-
tively. By comparison with our previous investigation where
only planar transfers had been considered, we conclude that 17
m/s of additional ∆V would be required for the MMX space-
craft to be inserted into a mid-altitude 3D-QSO and enable the
detailed observations of the high-latitude regions of Phobos (Ta-
ble 5).

Table 3. Orbital maintenance cost of 3D-QSO-M for 30 days
Az = 70km Az = 80km Az = 90km Az = 100km Az = 110km Az = 120km

3D-QSO type vcm (m/s) vcm (m/s) vcm (m/s) vcm (m/s) vcm (m/s) vcm (m/s)
1:17 0.9376 0.9320 0.9283 0.9249 0.9219 0.9190
1:18 0.8860 0.8827 0.8798 0.8773 0.8750 0.8729
1:19 0.8395 0.8371 0.8349 0.8329 0.8311 0.8295
1:20 0.7972 0.7954 0.7936 0.7921 0.7906 0.7869
1:21 0.7586 0.7572 0.7558 0.7546 0.7534 0.7522
1:22 0.7235 0.7224 0.7212 0.7202 0.7191 0.7182
1:23 0.6913 0.6904 0.6895 0.6886 0.6877 0.6869
1:24 0.6617 0.6611 0.6600 0.6595 0.6588 0.6581
1:25 - 0.6341 0.6334 0.6327 0.6322 0.6314
1:26 0.6094 0.6090 0.6086 0.6086 0.6079 0.6068
1:27 0.5862 0.5859 0.5856 0.5850 0.5845 0.5840

Table 4. Overall transfer and station-keeping cost of mid-
altitude 3D-QSOs.

Az = 70km Az = 80km Az = 90km Az = 100km Az = 110km Az = 120km
3D-QSO type ∆V t + vcm (m/s) ∆V t + vcm (m/s) ∆V t + vcm (m/s) ∆V t + vcm (m/s) ∆V t + vcm (m/s) ∆V t + vcm (m/s)

1:17 37.9737 45.6521 48.3913 55.5928 56.1084 64.1348
1:18 - 43.0563 47.1362 51.3869 - -
1:19 - 44.6213 46.1121 54.4268 58.2922 62.4881
1:20 - - - 49.7909 57.7606 57.7867
1:21 - 44.7911 46.0979 50.3316 54.7476 62.0658
1:22 - - - - 55.5314 58.0145
1:23 - - - 50.2637 54.0058 59.1082
1:24 - - - - 54.2276 58.5609
1:25 - - - - 54.6675 58.8815
1:26 - - - - 55.2409 57.0393
1:27 - - - - - 60.0596

Fig. 5. Min ∆V t transfer between QSO-H to QSO-L via 3D-
QSO-M. [∆V t= 37.04 m/s; TOF t= 9.47 days; vcm=0.93 m/s]

Fig. 6. Min TOF t transfer between QSO-H to QSO-L via 3D-
QSO-M. [∆V t= 55.19 m/s; TOF t= 4.70 days; vcm=0.92 m/s]

Table 5. Transfer cost for high-latitude coverage with 3D-QSOs
Transfer stage Transfers via MP-QSOs Transfers via 3D-QSOs Difference

min ∆Vtotal min ∆Vtotal min ∆Vtotal

QSO-H→ QSO-La 21 m/s 37.97 m/s 16.97 m/s

5. Summary and Conclusions

The present study aimed at developing transfer trajectories
connecting planar and spatial quasi-satellite orbits in the vicin-
ity of Phobos. Firstly, we introduce an in-plane transfer method
utilizing Multi-revolution Periodic QSOs (MP-QSOs) that bi-
furcate from planar solutions and register ∆V and time-of-flight
values at multiple departing and arrival intersection points. By
comparison with previous results, we find that the total transfer
cost between the MMX baseline QSOs may be minimized by
using MP-QSO families that intersect the departing and arrival
orbits almost tangentially and with the highest possible value
of the Jacobi integral. Such a conclusion contributes in sev-
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eral ways to our understanding of the dynamical environment
around Phobos, and provide a basis for the selection of trans-
fer ∆V execution points. Secondly, we considered the out-of-
plane bifurcated families of QSOs and propose an out-of-plane
transfer strategy to insert the spacecraft into a 3D-QSO utiliz-
ing the stable and unstable manifolds emanating from unsta-
ble solutions. We later explored the feasibility of connecting
high-altitude and low-altitude QSOs via cheap transfer oppor-
tunities. To design a transfer, we considered the intersection of
capture and escape trajectories propagated from different loca-
tions along candidate 3D-QSOs with oblate cylinders passing
through the baseline planar orbits of the MMX mission. This
out-of-plane transfer technique provided us with a baseline to
estimate the costs and time-of-flights associated with ballistic
dynamics between high-altitude and low-altitude QSOs. To fur-
ther narrow the design space of mid-altitude out-of-plane tra-
jectories, a simple orbit maintenance strategy was implemented
to nullify the growth of orbit injection errors along the unsta-
ble eigenvectors of candidate 3D-QSOs. As a result of our in-
vestigations, it was found that transfers from high-altitude to
low-altitude regions around Phobos would be possible via in-
termediate 1:17 3D-QSOs that demands a minimum ∆V cost of
37.973 m/s and a minimum time of flight of less than 5 days.
The transfer methodology and analysis presented in this pa-
per can be extended for future missions that seek for low-∆V
transfer opportunities between stable retrograde orbits around
Phobos or any small irregular planetary satellites in the solar
system. In addition, the findings of this work could serve as ini-
tial guesses for transfer designs in higher-fidelity models of the
Martian system. Future work will improve upon the identified
transfer trajectories using appropriate optimization techniques
that would allow us to simulate and account for more-realistic
dynamics and engineering constraints.
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