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Abstract

Cislunar space has been attracting interest as a strategic place to connect the Earth and interplanetary space. The present
paper highlights a stable retrograde periodic orbit around the Earth as a novel option for staging orbits in cislunar space. Since
the periodic orbit is linearly stable against solar gravitational perturbations, long–term operations would be more suitable than
unstable orbits. The Moon–grazing geometry leads to a narrow stability region allowing modest ∆v to capture into (escape
from) the periodic orbit via a lunar flyby. In the analysis of capture trajectories, we globally search for transfer trajectories
from the vicinity of the Earth. It is found that Sun–perturbed, multi–revolutional transfer is a promising option to reduce the
launch energy and insertion ∆v. In the escape analysis, the flexibility of tuning escape directions from the periodic orbit toward
interplanetary space is studied. Assuming that a powered Earth flyby is a means to tune the escape energy, it is demonstrated
that practical ∆v and time–of–flight are able to make the escape direction arbitrary.

月近傍を通過する地球まわりの安定な逆行周期軌道

大島健太 (広島工業大学)

摘要

近年，シスルナ空間は地球と深宇宙を中継する重要拠点として注目を集めている．本研究では，シスルナ空間における新たな中継
軌道の選択肢として，地球まわりの安定な逆行周期軌道に着目した．対象とした逆行周期軌道は太陽重力の摂動下においても線形
安定であり，中継軌道上に長期滞在するミッションを実施する際，不安定な軌道と比較して有利であると考えられる．また，この
周期軌道は月近傍を通過し安定領域が狭いことから，月スイングバイを介して十分小さい∆vによって出入りが可能である．地球
近傍から逆行周期軌道への遷移軌道を大域的に探索した結果，太陽重力の摂動を利用して探査機の軌道を逆行軌道に変換した後，
周期軌道の近傍において投入前に複数周回することで，打ち上げエネルギーおよび投入∆vを低減できることがわかった．逆行周
期軌道から深宇宙への脱出軌道の解析においては，パワード地球スイングバイによって脱出エネルギーを調整し，実用的な∆vと
遷移時間によって脱出方向を任意に調整できることを示す．

1 Introduction

Libration point orbits and distant retrograde orbits in the
Earth–Moon system have been candidate staging orbits in cis-
lunar space connecting the Earth and interplanetary space
[1, 2]. These low–energy prograde orbits around the Earth may
be also useful for lunar exploration due to their low relative ve-
locity with respect to the Moon [3]. To efficiently escape toward
a distant place beyond the Moon via Earth or lunar flybys,
the low–energy orbit should be converted into a high–energy
trajectory in the end, such as a retrograde escape trajectory
[4, 5, 6, 7, 8]. Although a low–energy escape from the Earth’s
gravity well is possible via the natural connection between man-
ifolds of Earth–Moon and Sun–Earth libration point orbits [9],
the resultant low–energy escape trajectories are doomed to be
bounded around the Earth’s orbit due to the disconnection be-
tween manifolds of Sun–Earth and Sun–planet libration point
orbits [10]. In this context, an already energetic retrograde or-
bit around the Earth, which can skip a process of pumping up
the energy in the escape phase, could be an alternative option
for cislunar staging orbits toward interplanetary space.

Our previous work [11] has preliminarily investigated the ac-
cessibility of a weakly unstable retrograde periodic orbit (RPO)
from the Earth and toward interplanetary space. Still, there

may be capable of improvement especially in the escape anal-
ysis, which assumed that a lunar flyby is a means to increase
the escape energy after departing from the RPO of relatively
long period (approximately 27 days). Since an upper bound of
the attainable escape energy via lunar flybys exists [5], other
options such as a powered Earth flyby would expand the reach-
able area. Also, a longer–period staging orbit may penalize the
escape energy more harshly due to its longer interval of re-
peating the same geometry. For example, many Earth–Mars
missions have implemented approximately 21–day launch peri-
ods [12] encouraging the use of shorter–period staging orbits.
Although the instability of periodic orbits may save insertion
and departure ∆v, the unstable nature of the RPO would not
be ideal for long–term operations.

The present study deals with these issues by exploring a
shorter–period (approximately 14.8 days), linearly stable RPO
belonging to another family “A1” [13]. The RPO is linearly
stable in the Earth–Moon circular restricted three–body prob-
lem (CR3BP), but the linear stability assessed in the bicircular
restricted four–body problem (BCR4BP) under solar gravita-
tional perturbations can be altered even in cislunar space [14].
Section 2 introduces the CR3BP and BCR4BP and Section 3
computes RPOs in both of the models. Two RPOs of the se-
lected synodic resonance are converged in the BCR4BP; one is
linearly stable and the other is weakly unstable. Section 4 ex-
plores stability regions around each of the converged RPOs in
the BCR4BP to highlight the favorable property of the linearly
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stable one. Based on the result, Section 5 investigates transfer
trajectory options from the vicinity of the Earth to the linearly
stable RPO. Section 6 presents an analysis of escape trajecto-
ries arbitrarily tuning the escape energy via a powered Earth
flyby and the escape direction by patching RPOs with practical
∆v and time–of–flight.

2 Dynamical Models

To incorporate solar gravitational perturbations into RPOs
(Section 3), assess the long–term stability (Section 4), or ex-
ploit solar gravitational perturbations (Section 5), we use the
planar BCR4BP modeling the motion of a spacecraft under
gravitational influences of the Earth, Moon, and Sun [15]. The
model assumes that the Earth and Moon move on circular
orbits around their barycenter and the Sun and the Earth–
Moon barycenter move on circular orbits around their common
barycenter in the inertial frame.
The non–dimensional equations of motion in the Earth–

Moon rotating frame are [16]

ẍ− 2ẏ = −∂Ū4BP /∂x,

ÿ + 2ẋ = −∂Ū4BP /∂y,
(1)

where

Ū4BP = Ū3BP − ϵmS

r3
+

ϵmS

a2S
(x cos θS + y sin θS), (2)

Ū3BP = −1

2
(x2 + y2)− 1− µ

r1
− µ

r2
− 1

2
µ(1− µ), (3)

r1 =

√
(x+ µ)

2
+ y2,

r2 =

√
(x− 1 + µ)

2
+ y2,

r3 =
√
(x− aS cos θS)2 + (y − aS sin θS)2,

(4)

θS = θS0 + ωSt, (5)

and ϵ = 1 in the BCR4BP. We also use vx and vy instead of ẋ
and ẏ, respectively, to represent the velocity components. The
present study sets the minimum Earth flyby altitude 300 km
and the minimum lunar flyby altitude 100 km.

Note that we explicitly introduce the continuous parameter ϵ
to highlight the relationship between the BCR4BP and CR3BP.
Substituting ϵ = 0 yields equations of motion in the CR3BP.
This relationship is exploited to compute periodic orbits in the
BCR4BP via the continuation procedure in Section 3. In this
paper, the planar CR3BP is used to simplify the analyses in
Sections 3 and 6 based on its time–independent property.

3 Retrograde Periodic Orbits

This section summarizes the family A1 [13] computed in the
Earth–Moon planar CR3BP and translates an orbit of interest
to the BCR4BP dynamics.

3.1 RPOs in Planar CR3BP

Figure 1 presents (a) sample orbits and (b) a characteristic
curve colored according to the maximum absolute value among
four eigenvalues of the monodromy matrix [16] of the family A1

computed in the Earth–Moon planar CR3BP. The 2 : 1 synodic

resonance such that a spacecraft revolves twice on the orbit
while the Sun revolves once in the Earth–Moon rotating frame
with the period TS = |2π/ωS | is highlighted. The definition
of the 2 : 1 synodic resonance leads to the doubly revolutional
geometry in the Earth–Moon rotating frame once converged in
the BCR4BP.
Note that synodic resonant orbits in the CR3BP could be

good initial guesses for periodic orbits in the BCR4BP due
to the resonant relationship with the Sun’s orbital motion in
the Earth–Moon rotating frame. Among infinitely many res-
onances, the 2 : 1 synodic resonance is selected because of its
linear stability, the tolerable period (approximately 14.8 days),
and the low perilune altitude (approximately 11000 km) indi-
cating a narrow stability region, which may allow modest ∆v
to capture into (escape from) the RPO via a lunar flyby.
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Figure 1: The family A1 of the RPO computed in the Earth–Moon
planar CR3BP.

3.2 RPOs in Planar BCR4BP

We make the 2 : 1 synodic resonant RPO in Figure 1(a) con-
verge into periodic orbits in the BCR4BP based on the proce-
dure developed in our recent work [17]. The symmetry in the
planar BCR4BP implies the existence of two families for every
synodic resonance. When M is even and N is odd for a certain
M : N synodic resonance, there exist “left” and “right” fami-
lies. One can constrain initial states of left and right families
at y = vx = 0 with smaller and larger values of x, respectively,
with the initial solar phase angle θS0 = 0 to efficiently com-
pute periodic orbits along a continuation process from ϵ = 0
(CR3BP) to ϵ = 1 (BCR4BP). See Ref. [17] for details.
Figure 2 shows the evolution of (a) the initial value of x and

(b) the absolute value of each of four eigenvalues of the mon-
odromy matrix in terms of ϵ along the continuation pathways.
As the name of the families indicates, the initial value of x at
y = vx = 0 with θS0 = 0 is smaller for the left family. Note
also that the almost constant evolution of x along the contin-
uation pathways implies that the geometry of the 2 : 1 syn-
odic resonant RPOs of both families is hardly affected by solar
gravitational perturbations. On the other hand, the panel (b)
highlights that the instability arises only in the left family once
the solar gravitational effect is turned on.
Figure 3 (a) presents the 2 : 1 synodic resonant RPOs of the

left (broken curve) and right (solid curve) families converged in
the BCR4BP (ϵ = 1). Although the difference in the position
space is somehow visible, Figure 3 (b) clarifies the difference by
plotting x and θS at y = 0. The solar phase angle is expressed
between 0 and 2π by the modulo operation. Two apolune states
(#1 and #2) for each of the families, the position and velocity
of which are varied in the next sections, are indicated. Note
that the panel (b) also highlights the doubly revolutional ge-
ometry of the orbits implied from the definition of the 2 : 1
synodic resonance in Section 3.1.
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Figure 2: The continuation pathways from the CR3BP (ϵ = 0) to
the BCR4BP (ϵ = 1) of the left (cross) and right (circle) families of
the 2 : 1 synodic resonant RPO.
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Figure 3: The 2 : 1 synodic resonant RPOs of the left (red) and
right (blue) families in the BCR4BP.

4 Stability Regions

This section explores stability regions around the 2 : 1 synodic
resonant RPOs of the left and right families in Figure 3. We
give a position (∆x and ∆y) or velocity (∆vx and ∆vy) error
on the two apolune states (#1 and #2) for each of the families
and propagate the perturbed states for 200 days in the planar
BCR4BP. We stop propagations if one of the following escape
conditions is satisfied: a trajectory violates 0.9 < r1 < 1.2, i.e.,
it is far from the RPO; a trajectory violates the minimum lunar
flyby altitude.
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Figure 4: Stability regions (cyan) around the 2 : 1 synodic resonant
RPOs (blue dot on the origin) of the left (top panels) and right
(bottom panels) families in the planar BCR4BP.

Figure 4 exhibits the stability regions around the 2 : 1 syn-
odic resonant RPOs. The color indicates the time–of–flight
(TOF) until one of the escape conditions is satisfied. The re-

sults of the other apolune #2 are omitted because they are
almost indistinguishable from those of #1. Since the left fam-
ily is unstable, it is located on the stability boundary. On the
other hand, the right family is surrounded by the stability re-
gion and thus it may be more robust against disturbances. Note
also that modest ∆v allows a spacecraft to capture into (escape
from) the right family across its narrow stability region. This
is the reason we give priority to th right family and further
investigate transfer trajectories into it from the vicinity of the
Earth in the next section.

5 Capture Analysis

This section investigates transfer options from the vicinity of
the Earth into the right family of the 2 : 1 synodic resonant
RPO. We assume an impulsive maneuver at the apolune states
#1 or #2, i.e., insertion ∆v, and propagate the perturbed
states backward in time for 200 days in the planar BCR4BP.
Once a trajectory reaches 10000 km altitude from the Earth
as a prograde orbit, we evaluate TOF and C3 [12]. We stop
propagations if a trajectory violates one of the minimum flyby
altitudes. The method is similar to the one in Ref. [11], but the
periodic orbit family of interest is different and the evaluation
of insertion ∆v is more accurate because the periodic orbit is
computed in the BCR4BP in the present paper.
Figure 5 shows the values of TOF, C3, and insertion ∆v for

transfer trajectories into the apolunes #1 and #2 of the right
family of the 2 : 1 synodic resonant RPO. The nearly π differ-
ence in the solar phase angles at the apolunes in Figure 3 (b)
leads to the similar solution structures. Four sample solutions
with small C3 and insertion ∆v are indicated to study mecha-
nisms for reducing them.
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Figure 5: Transfer options from the vicinity of the Earth into the
apolunes #1 (left panel) and #2 (right panel) of the right family of
the 2 : 1 synodic resonant RPO.

Figures 6 and 7 present transfer trajectories of the sample
solutions (i) and (ii) into the apolune #1 and (iii) and (iv) into
the apolune #2, respectively. We highlight two common char-
acteristics among the four sample solutions. The additional
revolution around the RPO before the insertion that is clear
in the amplified figures in the middle column is useful for re-
ducing insertion ∆v. We confirm that direct insertions appear
for solutions with larger insertion ∆v. The placement of an
apogee in the first or third quadrant around the Earth as those
in the right column reduces the angular momentum of a trajec-
tory [18] and sometimes converts it into a retrograde one [4],
which also contributes to the reduction of insertion ∆v into the
RPO. Note that the nearly π difference in the solar phase an-
gles at the apolunes #1 and #2 results in the almost opposite
placement of the apogees in Figures 6 and 7. If a lunar flyby is
adopted, the use of solar gravitational perturbations is available
for trajectories launched with the energy enough for reaching
the lunar orbit and thus the Sun–perturbed option reduces C3
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down to the level of standard lunar transfers [19] at the cost of
substantial TOF typical for low–energy lunar transfers [20].
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Figure 6: Sample capture solutions (i) and (ii).
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Figure 7: Sample capture solutions (iii) and (iv).

6 Escape Analysis

This section assesses the amount of ∆v and TOF required to
arbitrarily tune the escape direction from the 2 : 1 synodic
resonant RPO of the family A1 toward interplanetary space.
Since we adopt a powered Earth flyby, the escape energy can
be adjusted via the magnitude of an impulsive maneuver at
perigee.

6.1 Escape Direction

This subsection defines the escape direction before computing
escape trajectories. Let vout

∞ be the outgoing hyperbolic excess
velocity vector with respect to the Earth, θout be the angle be-
tween vout

∞ and an X–axis in the Earth–centered inertial frame,
and θEin

S be the angle between the Earth–Sun line and the X–
axis as illustrated in Figure 8. We then use the angle

θesc = θout − θEin
S (6)

to uniquely define the escape direction toward a target body.
It is convenient to rewrite Eq. (6) via parameters used in

the Earth–Moon rotating frame. Assuming that the x–axis in
the Earth–Moon rotating frame and the X–axis in the Earth–
centered inertial frame coincide at t = 0 and time at a powered
Earth flyby is t = tPG. Substituting t = tPG into Eq. (5) yields
the solar phase angle

θSPG
= θS0 + ωStPG, (7)

Figure 8: The definition of θesc denoting the escape direction.

and correspondingly the Sun’s location at a powered Earth
flyby in the Earth–Moon rotating frame

xSPG
= aS cos θSPG

,

ySPG
= aS sin θSPG

.
(8)

Transforming Eq. (8) into the Earth–centered inertial frame
[21] yields

xEin
SPG

= (xSPG
+ µ) cos tPG − ySPG

sin tPG,

yEin
SPG

= (xSPG
+ µ) sin tPG + ySPG

cos tPG.
(9)

One may further rewrite Eq. (9) by substituting Eq. (8) as

xEin
SPG

= µ cos tPG + aS cos (θSPG
+ tPG),

yEin
SPG

= µ sin tPG + aS sin (θSPG
+ tPG).

(10)

Thus, θEin
S at a powered Earth flyby can be expressed as

tan θEin
SPG

=
µ sin tPG + aS sin (θSPG

+ tPG)

µ cos tPG + aS cos (θSPG
+ tPG)

, (11)

which may be converted into a simpler form by composing the
trigonometric functions

tan θEin
SPG

= tan (θ + ϕ), (12)

or
θEin
SPG

= θ + ϕ, (13)

where

θ = tPG +
θSPG

2
, (14)

tanϕ =
aS − µ

aS + µ
tan

θSPG

2
≈ tan

θSPG

2
, (15)

leading to

ϕ ≈ θSPG

2
. (16)

Substituting Eq. (14) and Eq. (16) into Eq. (13) yields

θEin
SPG

≈ θSPG
+ tPG, (17)

and using Eq. (7) results in

θEin
SPG

≈ θS0 + (1 + ωS)tPG. (18)

Therefore, the escape direction in Eq. (6) can be approxi-
mated as

θesc ≈ θout − θS0 − (1 + ωS)tPG. (19)
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Note that θS0 is an epoch–dependent constant and thus one can
evaluate the ability of arbitrarily tuning the escape direction
based on the maximum ∆v and TOF required to cover the
whole range of

θ
′

esc = θout − (1 + ωS)tPG, (20)

which is independent of the Sun’s location. This leads to the
simplification of the analysis on escape trajectories by adopting
the time–independent Earth–Moon planar CR3BP. Since the
RPO is a high–energy orbit, capture trajectories require the
use of solar gravitational perturbations in Section 5, but escape
trajectories from the already energetic RPO does not need to
exploit them.

6.2 Escape Trajectories

Eq. (20) indicates that the escape direction can be tuned not
only by changing the position and velocity at perigee but also
by varying time at perigee. Therefore, we adopt a strategy of
patching RPOs of two different families to leverage various pe-
riods and geometries. One family is A1 [13] in Figure 1 that
the initial 2 : 1 synodic resonant orbit belongs to, and the other
is the family I [17], to which the initial 2 : 1 orbit can be con-
nected with small ∆v. The computation of escape trajectories
from the 2 : 1 synodic resonant RPO of the family A1 consists
of the following procedure:

1. Give an impulsive maneuver (∆v1) at apolune of the initial
orbit and propagate the perturbed states forward in time
for the quadruple of the period (approximately 59 days).
Store the orbital data when crossing y = 0 with vy > 0
and stop propagations if a trajectory violates one of the
minimum flyby altitudes. Figure 9 (a) shows the values of
x at y = 0 with vy > 0 in terms of ∆v1 and TOF.

2. At every intersection with y = 0 and vy > 0, find the
nearest apolune position among each of the RPO families,
make the RPOs cross the intersection point via the shoot-
ing procedure, and compute the insertion maneuver (∆v2).
Figure 9 (b) and (c) present TOF in terms of the period
of the inserted RPOs and ∆v2 for the families A1 and I,
respectively.

3. Give an impulsive maneuver (∆v3) on the inserted state
and minimize ∆v3 such that the trajectory reaches perigee
at 1000 km altitude from the Earth via the multiple shoot-
ing procedure [22].
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Figure 9: Computational procedure of escape trajectories.

Since the variation of time at perigee affects the escape di-
rection, it may be meaningful to incorporate additional revolu-
tions on the initial 2 : 1 RPO and the inserted RPO into every
converged zero–revolutional solution in the step 3. We set the
maximum numbers of revolutions one on the initial 2 : 1 RPO,
four on the inserted RPO of the family A1, and three on the
inserted RPO of the longer–period family I.

Note that ∆v2 and ∆v3 are merged into a single maneuver in
the cases of zero revolution on inserted RPOs. It is straightfor-
ward to derive the magnitude of a tangential perigee maneuver
∆vPG producing the desired change in the escape energy ∆C3

as

∆vPG = −VPG +

√
VPG

2 +∆C3, (21)

where VPG is the magnitude of the velocity at perigee in the
Earth–centered inertial frame.
Figure 10 shows resultant θ

′

esc and total ∆v of escape solu-
tions with total TOF less than 80 days, for example, until reach-
ing perigee. The panels (a) and (b) correspond to the results
before and after executing ∆vPG to attain C3 = 10 (km2/s2),
respectively. The execution of ∆vPG slightly changes vout

∞
and thus varies θ

′

esc. The difference between the panels cor-
responding to ∆vPG ≈ 440 m/s is in accordance with the
perigee maneuver in the planned escape trajectory of Nozomi
toward Mars [4, 5]. Figure 10 (a) indicates that total ∆v of ap-
proximately 50 m/s at most attains arbitrary escape directions
within 80 days.

Figure 10: Escape solutions with total TOF less than 80 days.

Figure 11 exhibits the sample escape trajectories in the
Earth–centered inertial frame indicated in Figure 10 (a). The
color distinguishes the phases of revolution on the initial RPO
(magenta), transfer into different RPOs (dark green), revolu-
tion on inserted RPOs (red), and transfer into perigee (blue).
All of the trajectories enjoy a close approach to the Moon (bro-
ken curve) en route to perigee. The insertion into the family
I is a favorite option adopted in the samples (1), (2), (3), (7),
and (8) experiencing the relatively low perigee altitudes during
the revolutional phase. The use of the family A1 appears in
the revolutional phase on inserted RPOs in the sample (12) as
well as the phase of revolution on the initial RPO in the sam-
ples (9), (10), and (11). Note that transfers with revolutions
on neither the initial RPO nor inserted RPOs are also potential
options found in the samples (4), (5), and (6).

7 Conclusion

The present paper has explored orbital characteristics of the
retrograde periodic orbit (RPO) around the Earth influential
in the usefulness as a staging orbit toward interplanetary space.
Firstly, we have found a linearly stable RPO under solar grav-
itational perturbations with the tolerable period of approxi-
mately 14.8 days. The narrow stability region around the RPO
would aid long–term operations as well as contributes to the
modest insertion (departure) ∆v. This is beneficial to trans-
fer trajectories from the vicinity of the Earth for reducing the
critical insertion maneuver down to ∆v less than 10 m/s. The
combination with the use of solar gravitational perturbations
leads to comparable costs with typical low–energy transfers into

5

This document is provided by JAXA.



-1.5 0 1.5
-1.5

0

1.5
(1)

-1.5 0 1.5
-1.5

0

1.5
(2)

-1.5 0 1.5
-1.5

0

1.5
(3)

-1.5 0 1.5
-1.5

0

1.5
(4)

-1.5 0 1.5
-1.5

0

1.5
(5)

-1.5 0 1.5
-1.5

0

1.5
(6)

-1.5 0 1.5
-1.5

0

1.5
(7)

-1.5 0 1.5
-1.5

0

1.5
(8)

-1.5 0 1.5
-1.5

0

1.5
(9)

-1.5 0 1.5
-1.5

0

1.5
(10)

-1.5 0 1.5
-1.5

0

1.5
(11)

-1.5 0 1.5
-1.5

0

1.5
(12)

Figure 11: Sample escape trajectories in the Earth–centered inertial
frame.

cislunar libration point orbits. The analysis on escape trajec-
tories from the RPO has found that arbitrary escape direc-
tions are achievable with ∆v of approximately 50 m/s at most
within 80 days until reaching perigee. The strategy of exploit-
ing a powered Earth flyby is able to tune the escape energy
via the maneuver at perigee, the magnitude of which has been
confirmed to be in accordance with a prior mission.
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