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A generalized formulation of the equinoctial elements is applied to the orbital uncertainty propagation of an object in Low-Earth

orbit. This formulation, recently published in Celestial Mechanics and Dynamical Astronomy, absorbs the effect of the dominating
perturbation term (e.g. J2) in the definition of the orbital elements, introducing the total energy as opposed to the classical Kepler orbital
energy. Additionally, the fast variable is chosen as a time element following the definition of Stiefel and Scheifele thereby making the
orbit equations of motion more linear. In order to test how long the orbit uncertainty propagation preserves its linearity, covariance
realism tests are performed comparing the new formulation with classical ones (Cartesian and classical equinoctial). Ballistic and low-
thrust maneuvering satellites are considered. The results show that the proposed generalized equinoctial elements preserve linearity
for several more revolutions compared to other formulations.
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1. Introduction

The propagation of the state uncertainty is a key concept
in stochastic dynamical systems. This uncertainty arises from
modeling errors in the dynamical model and the observations
used to determine the state. Typically, the state uncertainty
grows over time until eventually it is not possible to accurately
predict anymore.

In the astrodynamics domain, the state uncertainty is rou-
tinely propagated in applications such as orbit determination
and navigation of spacecraft, and space situational awareness
for monitoring of space debris and Near-Earth asteroids.

A commonly used simplification is to assume that the or-
bital uncertainty follows a Gaussian distribution, arising from
the Central Limit Theorem which states that a sum of random
variables tends to be normally distributed, even if the individual
random variables are not. This simplification has several ben-
eficial analytical properties, being the most important one that
a Gaussian distribution remains Gaussian under linear transfor-
mations. Thus, if a state transition matrix is employed to propa-
gate an initially Gaussian distribution, the resulting distribution
will also be Gaussian under this assumption.

However, the laws governing the orbital motion are nonlin-
ear. Even if the initial distribution can be reasonably considered
Gaussian, its probability density function (pdf) will evolve with
time and the assumption of Gaussianity will break down. There
are several techniques to mitigate the error of approximating the
real pdf by a Gaussian distribution.

One possibility is to feed more observations to the naviga-
tion filter, which is easy if the body whose orbit is under study
is an active spacecraft. However, this is not a trivial task for
space debris for several reasons. In the first place, active rang-
ing and GPS measurements are not possible since they are pas-
sive objects. Furthermore, if the object is small, optical obser-
vations may be challenging. Instead, radar observations may be
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required, which strongly depend on the ground track and may
be widely separated on time. In any case, the number of ob-
jects in LEO may increase exponentially owing to the increase
of space activity in the next years as can be seen in Fig. 1 which
was taken from Krag et al. (2012) 1) . If such an increase oc-
curs, it may become difficult to obtain frequent measurements
for all objects orbiting our planet.

Fig. 1. Evolution of the number of objects in LEO 1)

In parallel, one can employ advanced mathematical meth-
ods to account for the nonlinear nature of the dynamics, rang-
ing from Monte-Carlo methods 2) to solving the Fokker-Planck
Equation which governs the time evolution of the pdf of the
state 3) . In between, a myriad of methods of different level of
sophistication have been developed, like the use of unscented
transform 4) , state transition tensors, 5) differential algebra, 6)

polynomial chaos expansion, 7) Gaussian Mixture models 8) or
Kriging, 9) among others.

However, before applying any of these techniques, there is
a powerful tool that can be exploited to reduce the nonlinear
effects: using a different set of variables to represent the state
vector. 10, 11, 12, 13, 14)
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2. State Representation

Consider the equations of motion in Cartesian coordinates:

dr
dt

= u, (1)

du
dt

= −µ
r
|r|3

+ f , (2)

where r and u are the position and velocity vectors, respectively,
µ is the central body gravitational constant and f is the non-
Keplerian perturbation. In this problem, typically the central
body acceleration is dominant, while the non-Keplerian effects
are usually several orders of magnitude smaller. This system
quickly becomes non-linear unless frequent measurements are
included, both in the perturbed and unperturbed cases.

The question we must ask ourselves is: can we propose a set
of variables that better describe the true propagated uncertainty?
This is sketched in Fig. 2.

Initial
uncertainty

Better state representation

Cartesian

True solution

Propagated
uncertainty

Fig. 2. Effect of the state representation in the orbit uncer-
tainty

2.1. Conserved quantities
As Junkins et al. 10) pointed out, the use of orbital elements

seem to reduce the nonlinearities of the pdf evolution.
When employing orbital elements, usually one is an angle

which can be considered as a fast variable because its charac-
teristic time is much shorter than the other variables. Examples
of fast variables are true, eccentric and mean anomalies.

The other five quantities are usually slow variables, because
they are conserved quantities in the Keplerian motion and,
evolve slowly with the perturbations.

Then, by employing orbital elements, we have replaced six
fast variables (position and velocity components) by five slow
variables and a fast variable, improving the linearity of the sys-
tem. This applies to any flavor of classical orbital elements,
including equinoctial elements.

One example is represented by the equinoctial elements
(EqOE) proposed by Broucke and Cefola 15) . The first element
is the semi-major axis a. Then, P1 and P2 are introduced as the
projections of the eccentricity vector e into two directions of an
intermediate frame, which is called equinoctial frame:

P1 = e sin ω̄, P2 = e cos ω̄, (3)

where ω̄ is the longitude of periapsis. The orientation of this
reference frame is fixed by Q1 and Q2:

Q1 = sin Ω tan
i
2
, Q2 = cos Ω tan

i
2
, (4)

where i is the inclination. Finally, the mean longitude ` consti-
tutes the fast variable:

` = ω̄ + M, (5)

where M is the mean anomaly. This set of elements are non-
singular for zero eccentricity or inclination, which makes them
attractive for working with circular and/or equatorial orbits.

2.2. Time elements
It is possible to choose the fast variable of an orbital element

set to furthermore reduce the error. One straightforward choice
would be to replace the angular variable by the time of periapsis
passage, which is constant in the Kepler problem. This can be
generalized by using the definition of time element given by
Stiefel and Sheifele: 16)

any quantity ϕ which, during a pure Kepler motion, is a lin-
ear function of the independent variable
(that is, time). The general form of the time element ϕ is:

ϕ := αt + β. (6)

Note that if α = 0, the time element coincides with the afore-
mentioned time of periapsis passage. The time derivative of the
time element under Keplerian motion is constant and equal to
α, which suggests that if α is also a state variable, the evolution
of the uncertainty in ϕ will also be linear.

Using this concept, Horwood et al. proposed an alternate
formulation of the equinoctial elements (AEqOE) 17) . Their re-
lation to EqOE is shown in Fig. 3. A close inspection of Eq. (5)
reveals that ` is actually a time element in the sense of Stiefel
and Scheifele, because M = nt where n is the mean motion,
and ω̄ does not explicitly depend on time. This yields a more
efficient orbit uncertainty propagation method after simply re-
placing the semi-major axis by the mean motion.

EqOE:(a P1 P2 Q1 Q2 `)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

AEqOE:(n P1 P2 Q1 Q2 `)

Fig. 3. Relation between EqOE and AEqOE

Unfortunately, in LEO the assumption of a Gaussian distribu-
tion quickly becomes invalid due mainly to the J2 effect. This is
because when considering this perturbation, which is relatively
strong, the Keplerian energy is no longer a conserved quantity.

3. Generalized Equinoctial Elements

To palliate the limitations of AEqOE in real applications, we
recently presented a generalized equinoctial elements formula-
tion (GEqOE) 18) .

The main concept behind GEqOE is to exploit the fact that
some of the perturbing forces can be derived from a potential
U. When this is the case, we can introduce the total energy ε as
the sum of the Keplerian energy εK and the potential energy:

ε = εK + U, (7)

and define the generalized angular momentum c as

c =
√

h2 + 2r2U (8)

where h and r are the the osculating angular momentum and or-
bital radius, respectively. Combining ε and c, we can construct
generalized elements to describe the in-plane motion. These
elements show a smoother behavior than their osculating coun-
terparts when all the forces can be derived from a potential, and
reduce to the osculating elements when the potential vanishes.
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In this manner, we define the generalized mean motion ν as
the first element. Then, we introduce p1 and p2 as the general-
ized version of (A)EqOE’s P1 and P2:

p1 = g sin Ψ, p2 = g cos Ψ, (9)

where g is the generalized eccentricity, and Ψ is the generalized
longitude of periapsis.

The intermediate frame used to define some of the GEqOE
is again the equinoctial frame, therefore we include two of the
classical equinoctial elements q1 and q2:

q1 = sin Ω tan
i
2
, q2 = cos Ω tan

i
2
, (10)

Finally, we introduce the generalized true longitude L as the
fast variable:

L =M + Ψ (11)

where M is the generalized mean anomaly. The derivation of
the generalized mean anomaly and the rest of the elements is
explained in detail in 18) .

The relation between GEqOE and AEqOE is shown in Fig. 4.

AEqOE:(n P1 P2 Q1 Q2 `)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

GEqOE:(ν p1 p2 q1 q2 L)

Fig. 4. Relation between AEqOE and GEqOE

4. Results

A propagated Gaussian distribution, represented by its mean
and covariance matrix, is realistic if it represents the true distri-
bution in the variables chosen to represent the state. In this sec-
tion, we compare different state representations by linear prop-
agation of the initial covariance. As mentioned in the introduc-
tion, once a “good” state representation is identified nonlinear
methods can be used to improve the accuracy with a lower com-
putational cost than a “bad” state representation would entail.

We linearly propagate the covariance matrix P in time using
the state transition matrix obtained by numeric differentiation
of the equations of motion. Subsequently, the initial covariance
is sampled and the true state vector of each sample xi is cal-
culated using Cowell’s method. The Mahalanobis distance of
each sample Mi is defined as the square of the sigma-level of
the sample:

Mi = (xi − µ)> P−1 (xi − µ) (12)

where µ is the average state vector of the samples.
Following Aristoff et al. 19) , we employ the Cramér-von

Mises (CvM) test on the Mahalanobis distribution to assess the
covariance realism. The test statistic Q is calculated as

Q =
1

12N
+

N∑
j=1

(
2 j − 1

2N
− F(M j)

)2

(13)

where the summation is performed in increasing order of the
Mahalanobis distance, N is the number of samples, and F(z) is

the cumulative distribution function of a chi-squared distribu-
tion with 6 degrees of freedom:

F(z) = 1 −
1
8

exp−
z
2

(
z2 + 4z + 8

)
. (14)

The covariance is a good representation of the real distribution
if Q is in a tabulated interval that depends on the number of
samples; in practical terms, Q / 1.16 must be satisfied.

We apply this test to a LEO scenario inspired by the one pro-
posed by Aristoff et al. 19) . The initial state and covariance are
given in Tables 1 and 2, respectively. Only the gravitational
force of the Earth is considered, and the gravitational field is
simplified to point mass with J2. The initial covariance is sam-
pled with 10000 points. We compare Cartesian coordinates,
EqOE, AEqOE and GEqOE.

Table 1. Initial state vector
Element Value

a 7163.6 km
e 0.00949
i 72.9 deg
Ω 116 deg
ω −20 deg
M 0 deg

Table 2. Initial covariance expressed in EqOE
Element Value

a 20 km
P1 0.001
P2 0.001
q1 0.001
q2 0.001
` 0.01 deg

Figure 5 shows the CvM test statistic as a function of time for
this scenario. In the gray area, the covariance is a good repre-
sentation of the true pdf according to the CvM test. The Carte-
sian representation quickly becomes strongly non-Gaussian, as
was predicted. Gaussianity is conserved with AEqOE longer
than with EqOE, which can be justified by the arguments laid
out in Section 2.2.. The GEqOE formulation is able to remain
Gaussian for several orbits more compared to the other sets, un-
til eventually the nonlinear effects acting in the non-conserved
quantities degrade the accuracy of the linear prediction.
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Fig. 5. Cramér-von Mises test statistic for the ballistic case
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An interesting variation of this scenario is to assume that
the tracked object is a small satellite of a mega-constellation
and is maneuvering with a known tangential acceleration of
0.03 mN/kg. The results are shown in Fig. 6. The previous for-
mulations (Cartesian, EqOE, AEqOE) are not strongly affected
by the low-thrust because the J2 perturbation is dominant. How-
ever, since GEqOE can effectively mitigate the impact of the
Earth’s oblateness, the inclusion of additional non-conservative
perturbations degrades the performance while still being bet-
ter for longer times. This suggests that the GEqOE is likely to
show a good performance even when considering a high fidelity
dynamical model, since the nonlinear effects of the main pertur-
bation are partially absorbed by the choice of the state vector.
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Fig. 6. Cramér-von Mises test statistic for the low-thrust case

5. Conclusions

The covariance realism of the orbital motion can be drasti-
cally improved by a careful selection of the state representa-
tion. It seems advantageous to select as state variables quanti-
ties that are conserved along the Keplerian motion, and show a
slow variation in presence of perturbations. Moreover, it plays
an important role the fact that the time derivative of the fast vari-
able is a linear function of the other state variables and time.

These concepts have been exploited in the past to obtain
more efficient state representations. In this work, we propose
to employ an improved version of the Equinoctial Elements in
which some of the forces can be derived from a potential. This
formulation, which we call Generalized Equinoctial Elements,
introduces a new conserved quantity in the main problem be-
cause the Keplerian energy is replaced by the total energy when
considering the J2 perturbation, which is dominant in the Low
Earth Orbit environment.

A Cramér-von Mises test is used to asses the performance
of the proposed formulation in the LEO environment. Results
show that the Generalized Equinoctial Elements can preserve
covariance realism for a longer time span compared to previ-
ous formulations. Additionally, they are likely to outperform
previous formulations when considering a high fidelity model
because they are not limited by the dominant J2 effect.

In future works, analytical expressions for the variational
equations needed to implement the numerical propagation of
the state transition matrix will be derived and provided. Finally,
a comparison with a recently developed formulation by Aristoff

et al. (J2EqOe) will be performed.
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