
Adaptive Attitude Control of Spacecraft via Deep Reinforcement Learning
with Lyapunov-Based Reward Design

Kazutoshi Ito and Tomohiro Yanao (Waseda University)

Abstract
Recent and future space missions include various purposes, and autonomous spacecraft

attitude controllers are getting important. In this study, we numerically implement adaptive
attitude control of a spacecraft including large angle maneuvers via deep reinforcement learn-
ing. Deep reinforcement learning is a useful way to deal with autonomous adaptive attitude
control problems. However, it takes vast time to learn the global policy. In this study, we
use Lyapunov functions to design rewards for the adaptive attitude control, which improve the
learning efficiency and achieve more stable learning. Finally, it is shown that the learned policy
controls the attitude of a spacecraft robustly under perturbations.

Lyapunov関数を用いた深層強化学習による宇宙機の適応的姿勢制御
伊藤司聖,柳尾朋洋 (早稲田大学)

摘要
近年の宇宙ミッションでは様々な目的で宇宙機が設計されており，宇宙機の姿勢制御を自

動化することがますます重要になってきている．本研究では，深層強化学習を利用して大き
な姿勢マヌーバを含む適応的な姿勢制御を計算機上で実現する．深層強化学習は，宇宙機の
適応的な姿勢制御に有効な手法であるが，目的の姿勢制御を実現するための大域的な方策を
学習するのに大きな時間コストを要し，従来の報酬設計では方策の最適解の安定性や収束性
も十分に保証されない．そこで本研究では，リアプノフ関数を利用して報酬設計を行うこと
により，学習効率を向上させるとともに，安定した学習を可能とする．そして，学習で得られ
た方策が摂動に対してロバストな制御を実現することを示す．

I. Introduction
As space missions become more versatile, not only

conventional satellites such as observation satellites and
communication satellites, but also novel types of space-
craft such as the one to recover space debris, solar sails for
deep space exploration [1, 2], and transformable space-
crafts [3] are proposed and designed. For future space
missions, it is necessary to design and control spacecraft
adequately depending on the purpose of each mission.
Therefore, it is ideal for future space missions to automate
all processes from spacecraft design to operation.

Reinforcement learning is actively studied as a means
to solve continuous control tasks automatically. In particu-
lar, reinforcement learning is applied to high dimensional
tasks that conventional control methods are difficult to
solve, such as industrial robots performing pick-and-place
tasks [4] and quadrupedal robots performing walking mo-
tions in environments without any prior knowledge [5].

In addition to robot control, reinforcement learning is
applied to explain the motions of living things. One ex-
ample is the swimming motion of fish. Fish achieve their

swimming motions by periodically deforming their own
bodies. However, it is still unclear how to make the swim-
ming motion more efficient. Ref. [6] attempted to explain
the swimming motion of fish by periodic deformation mo-
tions obtained by reinforcement learning.

Moreover, reinforcement learning have plenty of po-
tential for space industry for the purpose of automating
attitude and trajectory control of spacecraft [7, 8]. While
reinforcement learning is much anticipated in many fields,
its stability in control and robustness against perturbations
are not sufficiently studied [9]. Therefore, it is necessary
to consider a control method that guarantees the stability
and robustness in order to apply it to more realistic atti-
tude control problems of spacecraft, where safety must be
sufficiently ensured.

In this study, we apply Lyapunov functions to design
rewards in deep reinforcement learning for the robust at-
titude control of spacecraft. Sec. II introduces the model
and methods. Sec. III defines the states, actions and
rewards for the deep reinforcement learning. Sec. IV
presents the results, and Sec. V concludes this paper.

1

This document is provided by JAXA.



Fig. 1 Spacecraft Model

II. Methods

A. Spacecraft Model
In this study, we consider attitude control of the space-

craft shown in Fig. 1. Moment of inertia of the model
is determined with reference to [7, 8] and set to be 𝐽 =
diag(0.872, 0.115, 0.797) kg · m2. Attitude of the space-
craft is controlled by torque 𝒈 generated by thrusters in the
direction of each principal axis of inertia.

B. Spacecraft Attitude Dynamics
In this study, we consider a spacecraft as a rigid body.

The spacecraft follows Euler’s rotational equation [10]:

𝐽 ¤𝝎 = −𝝎 × 𝐽𝝎 + 𝒈 + 𝒈ext, (1)

where 𝐽 is moment of inertia, 𝝎 is angular velocity, 𝒈 is
control torque and 𝒈ext is other disturbance torque.

Spacecraft attitude is represented by quaternion 𝒒 =
(𝑞𝑠 , 𝒒𝑣 ) = (𝑞1, 𝑞2, 𝑞3, 𝑞4), and its kinematic equation is
expressed as

¤𝒒 =
1
2
𝛀(𝝎)𝒒, 𝛀(𝝎) =

(
0 −𝝎𝑇

𝝎 −𝝎×

)
. (2)

Note that 𝝎× represents a skew-symmetric matrix [10]
corresponding to angular velocity 𝝎 defined by

𝝎× =
©­­«

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

ª®®¬ . (3)

C. Reinforcement Learning
Reinforcement learning (RL) is a learning framework,

in which, as shown in Fig. 2 [11], an agent interacts
with external environment by transferring states, actions,

Fig. 2 Reinforcement Learning Framework

and rewards. When an agent observes state 𝑆𝑡 from the
environment at discrete time 𝑡, it decides the agent’s actions
𝐴𝑡 using the policy 𝜋(𝐴𝑡 |𝑆𝑡 ) and acts on the environment.
The environment changes to a new state based on the
agent’s action and sends the next state 𝑆𝑡+1 and the reward
𝑅𝑡+1 generated by the change to the agent. This cycle
is repeated until the terminal condition is satisfied, and
finally the agent learns the policy that maximizes the sum
of rewards 𝐺𝑡 expressed as

𝐺𝑡 =
𝑇 −𝑡∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 , (4)

where 𝛾 is the discount factor, and 𝑇 is the time horizon.
In a RL training, the value function and the action-

value function are introduced to evaluate a policy. Value
function𝑉 𝜋 (𝑠) is a function of states that estimates total
rewards for a given state 𝑆𝑡 = 𝑠:

𝑉 𝜋 (𝑠) = E𝜋

[
𝑇 −𝑡∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘

�����𝑆𝑡 = 𝑠

]
. (5)

Action-value function is a function of state-action pairs
that estimates total rewards for a given state-action pair
(𝑆𝑡 , 𝐴𝑡 ) = (𝑠, 𝑎):

𝑄 𝜋 (𝑠, 𝑎) = E𝜋

[
𝑇 −𝑡∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘

�����𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
. (6)

D. Deep reinforcement learning
Deep reinforcement learning approximates a policy or

value function and/or action-value function with neural
networks as shown in Fig 3. In traditional RL, the pol-
icy is approximated using polynomial parameterized by
some variables, or the value and/or action-value function
is approximated using tabular functions [11]. While tra-
ditional RL algorithms without neural networks can solve
tasks where state and action spaces can be discretized, it
becomes challenging to solve tasks as state and spaces be-
come higher dimensional. Neural networks can overcome
this problem. In recent years, neural networks are used
in most modern RL algorithms to solve many challenging
high dimensional tasks, such as continuous control tasks
[12–14] and Atari tasks [13, 15].

2

This document is provided by JAXA.



Fig. 3 Neural Network Model

Fig. 4 SAC Framework

E. Soft Actor Critic (SAC)
Soft Actor Critic (SAC) is a deep RL algorithm pro-

posed in Ref. [14]. Differing from the normal RL, SAC
maximizes the following objective function 𝐽 which in-
cludes total discounted rewards and an entropy:

𝐽 =
𝑇 −𝑡∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 + 𝛼H(𝜋(·|𝑆𝑡 )), (7)

where 𝛼 is a time-dependent value and H is an entropy.
As shown in Fig. 4, SAC uses an Actor-Critic model

[11] that introduces a value function to evaluate the ac-
tion in addition to a measure to determine the action. In
particular, SAC learns by introducing two additional ac-
tion value functions in addition to the value function. In
SAC, each of the policy, the value function, and the ac-
tion value function is approximated by a neural network.
In addition, off-policy learning such as SAC is performed
using transition data obtained from past interactions with
the environment stored in replay buffer.

III. Reinforcement Learning for Spacecraft
Attitude Control

As stated in the previous section, reinforcement learn-
ing is an agent-environment framework which transfers
states, actions and rewards alternately. This section de-
fines states, actions, and rewards of this study.

A. State and Action Settings
Attitude dynamics of a spacecraft following Eq. (1)

is determined by quaternion 𝒒, angular velocity 𝝎 and

control torque 𝒈. In this setting, an agent controls torque
𝒈 based on quaternion 𝒒 and angular velocity 𝝎 at time 𝑡.

Thus, state 𝑆𝑡 at a discrete time 𝑡 is given as

𝑆𝑡 = (𝒒𝑒 (𝑡),𝝎(𝑡) − 𝝎𝑑), (8)

where 𝒒𝑒 = (𝑞𝑒𝑠 , 𝒒𝑒𝑣 ) = (𝑞𝑒1 , 𝑞
𝑒
2 , 𝑞

𝑒
3 , 𝑞

𝑒
4) is error quaternion

between attitude at time 𝑡 and target attitude, and 𝝎𝑑 is
target angular velocity. Then, action 𝐴𝑡 at a discrete time
𝑡 is given by

𝐴𝑡 = 𝒈(𝑡). (9)

B. Lyapunov Stability Theory
We consider stability about an equilibrium point of the

following nonlinear system:

¤𝒙 = 𝑓 (𝒙), (10)

where 𝒙 represents a displacement from an equilibrium
point. Lyapunov stability theory categorizes stabilities of
equilibrium points into three types: stable, asymptotically
stable and exponentially stable [16].

An equilibrium point is stable if there exists a𝐶1 func-
tion 𝑉𝐿 , functions 𝛼𝑖 (𝑖 = 1, 2), positive constant 𝑟 that
satisfy the following equations for any 𝒙 [16]:

𝛼1 (‖𝒙‖) ≤ 𝑉𝐿 (𝒙) ≤ 𝛼2 (‖𝒙‖), ¤𝑉𝐿 =
𝜕𝑉𝐿

𝜕𝒙
𝑓 (𝒙) ≤ 0.

(11)
An equilibrium point is asymptotically stable if there

exists a 𝐶1 function 𝑉𝐿 , functions 𝛼𝑖 (𝑖 = 1, 2), positive
constant 𝑟 that satisfy the following equations for any 𝒙
[16]:

𝛼1 (‖𝒙‖) ≤ 𝑉𝐿 (𝒙) ≤ 𝛼2 (‖𝒙‖),
¤𝑉𝐿 = 𝜕𝑉𝐿

𝜕𝒙 𝑓 (𝒙) ≤ −𝛼3 (‖𝒙‖).
(12)

An equilibrium point is exponentially stable if the
equilibrium point is asymptotically stable and 𝛼𝑖 (‖𝒙‖) =
𝑎𝑖 ‖𝒙‖ 𝑝 (𝑖 = 1, 2, 3), where 𝑎𝑖 is a positive constant and 𝑝
is a positive integer [16].

C. Lyapunov-Based Reward Design
There are various reward designs for control tasks. For

example, sparse reward is defined as follows:

𝑟𝑡 =

{
+1 task success,
−1 otherwise.

(13)

Sparse reward can easily reach the global optimal solution,
but the convergence speed is low.

Another example is a distance-based reward defined as
distance from a current position 𝒙 and a target position 𝒙𝑑
expressed as

𝑟𝑡 = −‖𝒙 − 𝒙𝑑 ‖, or 𝑟𝑡 = exp(−‖𝒙 − 𝒙𝑑 ‖). (14)

3

This document is provided by JAXA.



As opposed to sparse reward, distance-based reward is
faster to learn, although it tends to fall into local optimal
solutions. These reward design above are useful to solve
many control problems including attitude control problems
[7, 8].

However, these methods do not guarantee the stability
around target points. In addition, optimization problems
are difficult to get global optima as more parameters need
to be optimized. Therefore, in this study, we design re-
ward for the attitude control of a rigid spacecraft based
on the Lyapunov function. In this Lyapunov-based reward
design, agent receives a positive reward if the Lyapunov
function 𝑉𝐿 satisfies the exponentially stable conditions.
Otherwise, agent receives a negative reward. We thus
define Lyapunov-based reward as follows:

𝑟𝑡 =


+1 𝑎1‖𝒙‖ 𝑝 ≤ 𝑉𝐿 (𝒙) ≤ 𝑎2‖𝒙‖ 𝑝

and ¤𝑉𝐿 = 𝜕𝑉𝐿
𝜕𝒙 ¤𝒙 ≤ −𝑎3‖𝒙‖ 𝑝 ,

−1 otherwise.
(15)

For the attitude control of a rigid-body-like spacecraft, we
define displacement 𝒙 and Lyapunov function 𝑉𝐿 as [17]:

𝒙 =
(
𝒒𝑒 − 𝒒𝑑 ,𝝎(𝑡) − 𝝎𝑑

)
, (16)

𝑉𝐿 (𝒙) =
𝑘𝑑
2
(𝝎 − 𝝎𝑑)𝑇 𝐽 (𝝎 − 𝝎𝑑)

+𝑘 𝑝

[
(1 − 𝑞𝑒𝑠 )2 + 𝒒𝑒𝑇𝑣 𝒒𝑒𝑣

]
, (17)

where 𝒒𝑒𝑑 = (1, 0, 0, 0) is the error quaternion for the target
attitude.

IV. Results
Table 1 shows the settings of environment and agent.

Table 1 Settings of Environment and Agent

Parameters Value

Moments of inertia diag(0.872, 0.115, 0.797) kg·m2

Stacked time 0.1 s
Frameskip time 0.0 s

Control frequency 10Hz (0.1 s)
Max control torque 0.5 N·m

# of steps per episode 1000 steps (100.0 s)
𝑘𝑑 1.0
𝑘 𝑝 5.0
𝑎1 0.01
𝑎2 5.0
𝑎3 0.001
𝑝 2

We consider two types of attitude control problems:
the case with impulse disturbance torque and the case

without any disturbance torque. In both cases, agent is
trained with the initial conditions that error quaternion is
randomly and uniformly distributed, and initial angular
velocity is 𝝎0 = (0.0, 0.0, 0.0) rad/s. In agent’s training,
we use 1M total timesteps to update agent’s policy, and
each episode is terminated if ‖𝒒𝑒 − 𝒒𝑒𝑑 ‖ < 0.01 or the
number of steps is 1000 steps.

A. Results without Disturbance Torque
We first evaluate agent’s policy under the condition that

no disturbance torque is applied during control. Initial and
target conditions are set as in Table 2.

Results are shown in Figs. 5 - 6. As we see from
Fig. 5, agent was able to control spacecraft to target atti-
tude successfully. We observe that the attitude maneuvers
satisfy Lyapunov stability conditions through the entire
evaluating episode as in Fig. 6.

Table 2 Initial and target conditions in attitude con-
trol without any disturbance torque

Parameters Value

Initial error quaternion 𝒒𝑒0 (0.707,−0.308,−0.308,−0.308)
Initial angular velocity 𝝎0 (0.0, 0.0, 0.0) rad/s
Target error quaternion 𝒒𝑒𝑑 (1.0, 0.0, 0.0, 0.0)
Target angular velocity 𝝎𝑑 (0.0, 0.0, 0.0) rad/s

Fig. 5 Time evolution of quaternion (left) and angular
velocity (right) without disturbance torque

Fig. 6 Time evolution of 𝑉𝐿 (left) and ¤𝑉𝐿 (right) with-
out disturbance torque

B. Results with Impulse Torque
We evaluate agent’s policy under the condition that an

impulse torque is applied at 𝑡 = 40.0 s. Initial and target
conditions and impulse torque are set as in Table 3.

Results are shown in Figs. 7-8. As we see from Fig. 7,
agent was able to control spacecraft to target attitude suc-

4

This document is provided by JAXA.



cessfully. We observe that the attitude maneuvers mostly
satisfy Lyapunov stability conditions even after an impulse
torque was applied at 𝑡 = 40.0 s as shown in Fig. 8.

Table 3 Initial and target attitudes and disturbance
torque in the case of attitude control under an impulse
disturbance torque

Parameters Value

Initial error quaternion 𝒒𝑒0 (0.707,−0.308,−0.308,−0.308)
Initial angular velocity 𝝎0 (0.0, 0.0, 0.0) rad/s
Target error quaternion 𝒒𝑒𝑑 (1.0, 0.0, 0.0, 0.0)
Target angular velocity 𝝎𝑑 (0.0, 0.0, 0.0) rad/s

Impulse torque 𝒈ext (5.0, 5.0, 5.0) N·m
Time to apply impulse torque 40.0 s

Fig. 7 Time evolution of error quaternion (left) and
angular velocity (right) with disturbance torque

Fig. 8 Time evolution of 𝑉𝐿 (left) and ¤𝑉𝐿 (right) with
disturbance torque

C. Robustness for Different Initial Angular Velocities
To quantify the robustness for different initial angular

velocities, we measure the total number of steps where
the difference between the error quaternion and the target
error quaternion ‖𝒒𝑒−𝒒𝑒𝑑 ‖ is less than 0.01 in one episode.

As shown in Table 4, we examine 9 different initial
angular velocities. For each initial angular velocity, we
simulated for 10 episodes. The resulted number of steps
satisfying ‖𝒒𝑒 − 𝒒𝑒𝑑 ‖ < 0.01 (=success steps) is shown in
Fig. 9. When the initial angular velocity is increased, it
takes longer to reach the target attitude, but the control to
the target attitude is still accurately performed.

D. Robustness for Different Moments of Inertia
We investigate the robustness of the attitude control for

different moments of inertia from that of the training. We
thus measure the number of success steps for moments of

Table 4 Nine cases of initial angular velocities to ex-
amine the robustness of agent’s learned policy

Initial Angular Velocity 𝝎0

Case1 (0.0, 0.0, 0.0) rad/s
Case2 (−0.1,−0.1,−0.1) rad/s
Case3 (0.1, 0.1, 0.1) rad/s
Case4 (1.0, 1.0, 1.0) rad/s
Case5 (−1.0,−1.0,−1.0) rad/s
Case6 (2.5, 2.5, 2.5) rad/s
Case7 (−2.5,−2.5,−2.5) rad/s
Case8 (5.0, 5.0, 5.0) rad/s
Case9 (−5.0,−5.0,−5.0) rad/s

inertia of 0.1, 0.3, 0.5, 2.0, 5.0 and 10.0 times the moment
of inertia used in agent’s training. The results are summa-
rized in Fig. 10. When the moment of inertia is 0.1 or 0.3
times the moment of inertia used in agent’s training, space-
craft attitude control was not successful with the learned
policy, whereas in the other cases, the learned policy was
able to control the attitude with the similar performance to
the moment of inertia used in the training. In particular,
the robustness tends to be maintained for the moments of
inertia larger than the learned one. Therefore, it is sug-
gested that learning with models with smaller moments
of inertia is more advantageous to secure the robustness
against the changes in moment of inertial of a spacecraft.

V. Conclusion
We have used Lyapunov functions to design rewards in

the deep reinforcement learning for the attitude control of
a spacecraft. The resulted attitude control has been robust
to a disturbance torque and the difference in initial angular
velocities, satisfying the Lyapunov stability conditions for
almost the entire episode. Moreover, the learned policy
has successfully controlled the attitude of spacecraft whose
moments of inertia are larger than the one used in the
training.

References
[1] Mori, O., Sawada, H., Funase, R., Morimoto, M., Endo,

T., Yamamoto, T., Tsuda, Y., Kawakatsu, Y., Kawaguchi,
J., Miyazaki, Y., Shirasawa, Y., and Demonstration Team
and Solar Sail W, I., “First Solar Power Sail Demonstra-
tion by IKAROS,” Transactions of the Japan Society for
Aeronautical and Space Sciences, Aerospace Technology
Japan, Vol. 8, No. ists27, 2010, pp. To_4_25–To_4_31.

[2] Fu, B., Sperber, E., and Eke, F., “Solar sail technology―
A state of the art review,” Progress in Aerospace Sciences,
Vol. 86, 2016, pp. 1–19.

[3] Ohashi, K., Chujo, T., and Kawaguchi, J., “Optimal motion
planning in attitude maneuver using non-holonomic turns

5

This document is provided by JAXA.



Fig. 9 Number of steps satisfying ‖𝒒𝑒 − 𝒒𝑒𝑑 ‖ < 0.01 in each episode for different initial angular velocities. The
leftmost box-and-whisker diagram represents the result for the initial angular velocity used in agent’s training,
serving as a benchmark to compare with other initial angular velocities.

Fig. 10 Number of steps satisfying ‖𝒒𝑒 − 𝒒𝑒𝑑 ‖ < 0.01 in each episode for different moments of inertia. The
leftmost box-and-whisker diagram represents the moments of inertia used in the agent’s training, serving as a
benchmark to compare with other moments of inertia.

for a transformable spacecraft,” Advances in the Astronau-
tical Sciences, Vol. 167, 2018, pp. 2735–2745.

[4] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S., “QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic Manip-
ulation,” , 2018.

[5] Tsounis, V., Alge, M., Lee, J., Farshidian, F., and Hut-
ter, M., “DeepGait: Planning and Control of Quadrupedal
Gaits using Deep Reinforcement Learning,” , 2020.

[6] Jiao, Y., Ling, F., Heydari, S., Heess, N., Merel, J., and
Kanso, E., “Learning to swim in potential flow,” Phys. Rev.
Fluids, Vol. 6, 2021, p. 050505.

[7] Elkins, J. G., Sood, R., and Rumpf, C. M., “Adaptive Con-
tinuous Control of Spacecraft Attitude Using Deep Rein-
forcement Learning,” AAS Astrodynamics Specialist Con-
ference, , No. August, 2020, pp. 1–18.

[8] Elkins, J. G., Sood, R., and Rumpf, C. M., “Autonomous
Spacecraft Attitude Control Using Deep Reinforcement
Learning,” AAS Astrodynamics Specialist Conference, , No.
October, 2020, pp. 12–14.

[9] Shirobokov, M., Trofimov, S., and Ovchinnikov, M., “Sur-
vey of machine learning techniques in spacecraft control
design,” Acta Astronautica, Vol. 186, 2021, pp. 87–97.

[10] Hughes, P. C., Spacecraft attitude dynamics, Courier Cor-
poration, 2004.

[11] Richard S., S., and Barto, A. G., Reinforcement Learing -
An Introduction, 2018.

[12] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D., “Continuous control
with deep reinforcement learning,” 2015.

[13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O., “Proximal Policy Optimization Algorithms,”
2017, pp. 1–12.

[14] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., “Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor,” International confer-
ence on machine learning, PMLR, 2018, pp. 1861–1870.

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D., “Human-level control through deep
reinforcement learning,” Nature, Vol. 518, No. 7540, 2015,
pp. 529–533.

[16] 井村順一, “《弟 8回》非線形システムの安定性理論の
基礎,”計測と制御, Vol. 43, No. 2, 2004, pp. 178–185.

[17] 山田克彦, “宇宙機の姿勢制御,” 計測と制御, Vol. 40,
No. 6, 2001, pp. 433–440.

6

This document is provided by JAXA.




