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1 Introduction 

The homogenous density distribution is not a proper approximation for asteroids that have undergone differentiation, 
which is demonstrated by iron meteorites analogous to planetary cores and stony achondrites analogous to crusts 
(Scheinber et al. 2015). The possible end-states of asteroid differentiation are either partially or fully differentiated body, 
or being disrupted into a rubble pile (Scheinberg et al. 2015). It is widely believed that some large asteroids like Ceres 
and Vesta are differentiated into a central mass core covered by a surface layer probably with mantle layer between them 
(Thomas et al. 2005, Zuber et al. 2011). The reflection spectrum of 21 Lutetia also supports its differentiated interior 
(Neumann et al. 2013, Neumann et al. 2018). These large asteroids are central to understanding planetary evolution and 
plays an important role in the simulation of the physical and chemical processes of terrestrial planet accretion (Zuber et 
al. 2011). The gravity field measurement is obtained from spacecraft-based tracking by a combination of Deep Space 
Network ranging and Doppler measurements with the onboard framing camera for optical imaging on the surface of the 
asteroids in real missions like Dawn (Konopliv et al. 2011) and OSRIS-REx (Scheeres et al. 2020). The optical 
measurements also provide flying data on the spacecraft location in the asteroid-centered body frame (Scheeres et al. 
2020). This technical fact enlightens the authors by such question whether it is applicable to “read” the density distribution 
of asteroids directly from the spacecraft’s flying state. 

For this purpose, a mapping between two groups of data, i.e., the flying state of spacecraft and the density distribution 
of the target asteroid, must be established in this investigation and this dynamical link can not be explicitly expressed 
mathematically due to the strong nonlinearity of the real dynamical environment. For such complex problem, a family of 
machine learning techniques, named deep learning based on artificial neural networks (ANNs) is remarkably powerful 
for automatically creating the feature extractors using large amount of data (Goodfellow et al. 2016). As is pointed out by 
the universal approximation theorem (Nielsen 2015), ANNs are able to approximate an arbitrary function. Thus, ANNs 
approach is expected to construct a mapping between flying state observation and density distribution of asteroids. Among 
various applications by different ANN approaches, the unmatched dimension between the physical parameter space (the 
density distribution in this investigation) and the observation space (the flying state in this investigation) results in 
ambiguous problem because multiple parameter sets can result in the same observation (i.e., degeneracies). Classical 
neural networks can not address this ambiguity directly and failed to fully characterize degeneracies (Ksoll et al. 2020). 
However, so-called invertible neural networks (INNs) are well suited to cope with this difficulty (see Ardizzone et al. 
2019a for instance). INNs learn the forward process after adding additional latent output variables to capture the 
information otherwise lost. This data-driven approach has been applied to determine the stellar parameter from 
photometry (Ksoll et al. 2020). Unfortunately, such unmatched dimension problem is to appear in this investigation for 
the parameterization of density distribution does not guarantee a physical parameter space that own equal dimension to 
the flying state observation, which is normally 6-dimensional. Besides this issue, the computation burden is exponentially 
increased for Monto Carlo simulation as one-more dimensional parameter is added to describe the density distribution. 
Thus, INNs are introduced in this investigation to construct the mapping between density distribution and flying state.  

The summary of this investigation is organized as follows: In Section 2, a multiple-layer assumption is adopted to 
describe the internal structure of a differentiated asteroid and two nominal flying trajectories are chosen to offer flying 
state observations; In Section 3, the neural network is setup with the INNs architecture briefly introduced and the training 
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process is evaluated; In Section 4, the performances of the trained model are analyzed in two testing cases; key findings 
are summarized in Conclusions. 

2 Astrophysical and Astrodynamical Environment Setup 

2.1 Multiple-layered Internal Structure Model 

A paramount example of fully differentiated asteroids is Vesta, which is taken as the target body of this investigation. 
Note that the methodology developed can also be applied to other differentiated celestial bodies. The internal structure of 
Vesta can be interpreted by a multiple-layered model consisting of core, mantle and crust for three-layer assumption or 
core and curst for two-layer assumption (Parker et al. 2014, Kattoum and Dombard 2008, etc), ignoring the slight local 
density deviation along the same layer. In this investigation, Vesta is approximated by two-layered structure using a 
combination of a single polyhedral and ellipsoids, respectively. Its surface characteristics are captured by the polyhedron. 
The core and mantle structures are represented by the ellipsoids, which is a widely used simplification in many literatures 
(Parker et al. 2014, Zuber et al. 2011, etc). Such two-layered model provides a satisfactory fit to gravity data alone while 
the three-layered mode is more appropriate for Vesta’s interior considering the independent geochemical and petrological 
constrains (Parker et al. 2014).  

Fig. 1 provides a sketch of two-layered structure of Vesta, where the internal section is colored by green and the 
polyhedral surface5 is indicated by grey. The core modelled by an ellipsoid is indicated by dark green and its center 
coincides with the mass center of polyhedral Vesta. To mathematically describe the motion of a spacecraft around Vesta, 
a body-fixed rotating frame, denoted as O-x-y-z, is attached to the mass center of the Vesta body. The x-axis lies along the 
line from the Sun to Vesta at t=0 with the y-axis perpendicular to it, completing a right-handed coordinate system. The z-
axis aligns the spin axis of Vesta. The three semi-major axes of the core ellipsoid, indicated by a1, b1, and c1, aligns to the 
x, y, and z-axis, respectively. One more ellipsoid is added in order to upgrade to a three-layered model. Hence, the 
equations of motion of a spacecraft in the gravity field of multiple-layered structure of Vesta follow 

ẍ-2ωẏ= ∂Ω
∂x 

,  ÿ+2ωẋ= ∂Ω
∂y 

,  z̈= ∂Ω
∂z 

        (1) 

where ω denotes the spin rate of Vesta and taken as 1617.33 degree/day 6. 

Ω(x, y, z)= x
2+y2

2
ω2+UVesta(x, y, z)             (2) 

where UVesta denotes the gravitational potential due to the Vesta body and can be approximated by the sum of each layer. 
For two-layered structure, 

UVesta(x, y, z)=Ucrust+Umantle        (3) 
where Ucrust and Umantle denotes the gravity potential due to the crust and the mantle, respectively.  

Since the mantle is modelled by ellipsoids, a Ferrers’ ellipsoid model (Ferrers 1870) is introduced to evaluate its 
potential and gravitational acceleration exerted upon the spacecraft (Bellerose and Scheeres 2007), which was used by 
the first author in (Liang et al. 2019). According to this model, the matter is uniformly distributed in the entire ellipsoid 
body and decreases smoothly to zero at its surface, so its gravity potential is explicitly expressed by the density and the 
size of the ellipsoid (Gómez 2007). Thus, the gravity potential due to the mantle can be evaluated directly by the Ferrers’ 
ellipsoid with mantle density ρmantle. The potential due to the crust layer can be calculated by the potential due to the 
crustal polyhedron minus the one due to the core ellipsoid with mantle density (Takahashi and Scheeres 2014). 
 For the two-layered internal structure of Vesta, the assumption made by Parker et al. (2014) are followed that the 
crust layer owns a density variation of 2310-3440 kg/m3 and 2660-3240 kg/m3 for the 22.4 km and 55.5 km crustal 
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thickness models. The mantle density ranges from 3400 kg/m3 to 4400 kg/m3 and the crustal density owns a range of 
2000-3300 kg/m3. Hence, the magnitude of amantle of the mantle ellipsoid is determined by the thickness of crust layer. 
Its ratio to the magnitude of bmantle ranges from 0.6 to 0.95 so as the one of bmantle to cmantle. The physical parameters 
used in this investigation guarantees a total cover over the estimated range of Vesta’s mass (2.22×1020 kg to 3.02×1020 kg) 
(Kattoum and Dombard 2009), as demonstrated by Fig. 2, where blue and orange region indicates the mass distribution 
for two- and three-layered structure.  

 
Fig. 1 A sketch of two-layered structure of Vesta.          Fig. 2 Mass distribution. 

 

2.2 Flying State Observation 

According to Eq. (1) and Eq. (2), the flying trajectory of a spacecraft flying around Vesta is determined by the 
potential of Vesta body, which is parameterized by ( ρcrust , ρcore , acore, bcore, ccore ) and ( ρcrust , ρmantle , ρcore , 
amantle	(bmantle), cmantle, acore (bcore), ccore). Starting from a certain initial state Xinitial, the final state Xfinal after a fixed time 
T is obtained through numerically propagation but can not be explicitly expressed. Thus, once a mapping between the 
physical parameters of Vesta internal structure and the flying state of spacecraft is established successfully, the interior of 
Vesta can be predicted from the in-situ or reconstructed flying state observation without an ergodic and heavy computation. 
Such mapping and its inverse can be mathematically expressed as  

Φ=Γ(Xfinal(Xinitial,T)) or Xfinal(Xinitial,T)=Γ-1(Φ)       (7) 
where Φ denotes the physical parameter set of Phobos interior. 
 Flying state observations starting from planar and vertical Kepler orbits are used to build up the individual mapping 
Γ. Targeting at a two-layered internal structure, one generated from Xinitial=[589 km, 0, 0, 0, 171.3181 m/s, 0]T and one 
generated from Xinitial=[0, 0, 589 km, 0, 171.3181 m/s, 0]T are used. For a three-layered internal structure, the flying 
feedbacks are taken along the orbit generated from Xinitial=[889 km, 0, 0, 0, 139.4472 m/s, 0]T and along the one generated 
from Xinitial=[0, 0, 889 km, 0, 139.4472 m/s, 0]T. The nominal orbits in the polyhedron model of Vesta without core or 
mantle are illustrated in the body-fixed frame (O-x-y-z) and in the inertial frame (O-xi-yi-zi), in Fig. 3(a) and Fig. 3(b), 
respectively. They share a similar altitude to Dawn spacecraft in low-orbit and high-orbit parking around Vesta (Konopliv 
et al. 2014). Because of the non-symmetric polyhedron shape of the Vesta body, the orbits generated from these two initial 
states are nearly-planar and nearly-vertical. This fact avoids singularity in mapping z or x and y coordinates to c or a and 
b of mantle and core ellipsoids but suggests that results based on nearly-planar and nearly-vertical orbits can work as two 
extreme cases examining the sensitivity of flying state observation to internal structure. To release computational burden, 
the final state Xfinal is recorded after a flying time of 1/4 of the period of the nominal orbit. 
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Fig. 3 Nominal nearly-planar and nearly-vertical orbits in the polyhedron model of Vesta: red and green lines indicate the 
low-altitude and high-altitude nearly-planar orbits; black and blue lines indicate the low-altitude and high-altitude nearly-
vertical orbits. 
 

3 Neural Network Setup 

3.1 Training Evaluation 

This invertible network offers the opportunity to simultaneously optimize the losses on both the in- and output 
domain (Grover et al. 2017). Thus, the success of this bi-directional training is evaluated by the following losses, i.e., the 
MMD loss in both forward and backward process comparing of two probability distributions through samples, the 
averaged loss of output and re-simulated Y and the averaged loss of input and re-constructed X, to measure the accuracy 
of training for point estimations. The latter two losses are estimated as the root mean square error of each component with 
respect to the value obtained via training and denoted by LossX and LossY, respectively. These four losses are recorded 
after each iteration of training until they ultimately converge, which takes about 50-60 training iterations, as illustrated in 
Fig. 5. In this investigation, the INNS must be trained individually based on four astrodynamical and astrophysical 
assumptions based on four combination of nominal orbits and interior structure, i.e., a low-altitude nearly-planar orbit in 
a two-layered structure denoted by LP2L. its convergence process estimated by the aforementioned losses is illustrated 
in Fig. 5, respectively. 
 

 
Fig. 5 Convergence process estimated by four losses in LP2L and LV2L case. 

4 Prediction Performances 

In the environment of macOS Big Sur system with an Apple M1 chip taking advantage of GPU acceleration, training 
the INNs until convergence for the LP2L and LV2L cases costs about 2.67 to 3.41 hours. Testing the well-trained INNs 
model for prediction is much faster based on a dataset of 20000 samples. A total test of 2000 times on each data consumes 
about 30 minutes. The final goal of this investigation is to develop a method predicting the internal structure of a target 
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body using flying data, so the testing performances are evaluated through a comparison of true value of sample physical 
parameter data and reconstructed data for 20000×2000 tests. To access the limitations of the method based on different 
nominal orbits and assumed internal structure, a case-dependent analysis based on the current numerical results is 
conducted as follows. 

Fig. 8 illustrates the correlation of sample and reconstructed physical parameters and the error distribution at each 
true value by the counts density. The plot highlights how well the INN predicts ρcrust, ρmantle, amantle, bmantle, and cmantle 
for all tests. Most of the predictions locate on a perfect 1-to-1 correlation between the reconstructed and true values, as 
demonstrated by Fig. 7(a), 7(c), 7(e), 7(g), and 7(i), respectively. Despite the generally satisfactory match, local slight 
blemish appears within some ranges for specific physical parameters, which is presented by the error distribution of Fig. 
7(b), 7(d), 7(f), 7(h), and 7(j). The correlation plots for both amantle and bmantle show the neck regions at specific range 
of true value, indicating uneven prediction performances along these two parameters. In particular, the smaller error 
distribution happens as the semi-axis of the mantle ellipsoid amantle ranges from 235 km to 245 km, corresponding to a 
crust height of about 53 km – 71 km based on polyhedron shape of Vesta body. Still, in the rest ranges, there is a majority 
of good predictions. The dramatic change of prediction performances near the neck region is presented in details by taking 
three slices taken from Fig. 7(f) as the true value of amantle=240 km, 244 km, and 250 km, as shown in the probability 
distribution of Fig. 8(b). Along the reasonable range of bmantle occurs two neck regions with smaller standard deviation, 
i.e., 138 km – 148 km and 190 km – 210 km. Particularly, three slices are taken near the right neck region at true values 
of bmantle=182 km, 192 km, and 207 km with their probability distribution shown in Fig. 8(c).  

As the flying state is feedbacked from a nearly-planar nominal orbit, it is supposed that the motion along z-axis can 
not be perturbed as strongly as planar motion by the potential change due to the various size of the plane symmetric 
mantle ellipsoids despite the non-symmetric polyhedron shape of Vesta body. Thus, the largest scatter is assumed to occur 
in the cmantle prediction of the mantle ellipsoid, which matches the numerical results shown in Fig. 7(j) and the probability 
distribution at the true value of cmantle=100 km in Fig. 8(d).  

Conclusions 

This investigation is devoted to the development of an interdisciplinary method to predict the internal structure of 
asteroids, combining knowledges of astrophysics, astrodynamics, and data science. In particular, a data-driven approach 
called Invertible Neural Networks (INNs) is introduced for the inverse problem “reading” the density distribution of a 
differentiated asteroid conditioned on a specific flying state of a spacecraft directly. A multiple-layered model is used to 
describe the heterogeneous density distribution of the differentiated asteroids. Flying states are taken as the observation 
along four different nominal orbits, which are generated from the similar altitude of parking orbits in Dawn mission in 
planar and vertical plane, respectively. Based on the parameters of Vesta, the training and testing performances of INNs 
are evaluated in the case of, i.e., low-altitude nearly-planar trajectory in 2-layered model (LP2L). Finally, it is noticed that 
this data-based method is applicable for other fully or partially differentiated asteroids like Ceres or Lutetia in a similar 
manner and can be extended to other types of small bodies or moons like Phobos if their density distribution is 
parameterized within the computation allowance using proper flying state observation. 
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