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What is Data Assimilation?

» Emerging subject in meteorology and oceanography.

» Methodology to synthesize numerical simulation model
and observed data
—|Simulation modelfcan not reflect real physics accurately.

 (e.g.) Accurate weather forecast needs good initial conditions.

* Uncertainty in the model (boundary condition, initial condition,
unknown parameters, unknown dynamics...) exists.

—|Observation datajhave some physical/budgetary restrictions.
Correct variables in numerical simulation model
using observation data. = Data Assimilation

Simulation model Observation data

— >0

3/42
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Objects of Data Assimilation from a viewpoint of

Meteorology and Oceanography

[1] To produce the best (better) initial condition for forecasting. It is actually
realized in the real weather forecast (ex., Japan Meteorological Agency).

[2] To find the best (better) boundary condition in constructing a simulation
model. This procedure includes a setting of appropriate boundary conditions
necessary for dealing with a coupled phenomena.

[3] To attain an optimal parameter vector that appears in an empirical law
(scheme) employed for describing complicated phenomena with the different
time and spatial scales. A validation of the empirically given values is
regarded as this problem.

[4] To inter/extrapolate (estimate) an physical quantity at times and locations
without observations based on a numerical simulation model. This procedure
is called “a generation of re-analysis dataset (product)”. This dataset is used
to discover a new scientific findings by general geophysical researchers.

[5] To conduct an experiment with a virtual observation network and perform a
sensitivity analysis in an attempt to construct an effective observation
network system with less budgetary cost and less consuming time.

4/42 (ex. Kamachi et al., 2006)
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Outline

» Mathematical basis and Bayesian computation
e Sequential data assimilation
» Ensemble-based nonlinear filtering method

—Particle filter (PF)

e Advanced methods for PF
—Merging PF
—Meta PF
—PF with GPGPU

Conclusions

o o

Construction of Simulation Model

(simplified meteorological model around Japan)

PDE to approximate real physical system
(continuous time/space)

% _ CX2 e PDE : Partial differential equation physical variable vectorfi is assigned
ot at each grid point.
temperature
D'iscrete stimulation model & :((T)@
(discrete time/space, FDE) Wind Vector
X, = F(X_) , . e /7'\
(time-varying) — { :
«—— Boundary conditions = Q )
v, L\ 1+1
Nonlinear state space model \/
(discrete time/space, stochastic(SDE)) _ i
X =F (X1, %) Observation points and observed
variables are limited.
6/42 W0l e TR %
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State Vector: Contact point between past and future

Past and
Present

Present
and
Future

State of time t @: F (@ State of time t-1

Simulation Model

EAHENRRIGE L AT LR

7142 Wl w=recemaem

From one path to PDF (=Probability

Distribution Function)

Simulation model
X, = Ft (Xt—l)

Simulation model with uncertainty  p(x, )
X ~ F, (Xt—l)

Xt
Relation to observed data. f )
)

yt ~ ht (Xt ) p(xt ly,

Next slide

Conditional

PX, Iyt)

Xt

DA = Estimate p(x¢ | Yy

8142 Wl w=recemaem
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Conditional and Joint Probabilities

P(A) =Probability of A
p(A | B) = Probability of B given A «— conditonal Probability
P(A, B) = probability of A and B

Joint Probability

p(A=1) =2 p(A:l,le):, p(B=1/A=1)=20 =
100 100 30 {20
Total: 100
# of consumers to buy a bag of coffee grounds : 30 A M B

# of consumers to buy milk: 60

# of consumers to buy a coffee bag and milk: 10

A=1: Buy a bag of coffee grounds

=0: Not buy
B=1: Buy milk e
=0: Not buy A - B
9/42 B0l s T

Marginalization

6
A — 3 — A — 3’ B — . Jointpro-bability -
p(A=3) ;p( D AZiB= )

A=1: Yahoo

4 6

=2: Google ZZD(A:LB: =1
=3: Microsoft SR
=4: Others

A A=3

Web Search Engine

B=1: NEC, =2: Fujitsu, =3: Dell
=4: Toshiba, =5: Apple, =6: Others

p(A=A)= > p(A.B=B) — p(A):jp(A,B)dB

Jepossible B ;.

FPATNRRIYEL A2 ATL AR
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Bayes’ Theorem

Itis eadSVY t
pB1A) =2AB)  hia ) p(alaypa) PO
P(AB) _ p(A.B)  (p(B]AP(A)
S E) > p(AB) Zp? 2)p(A)
AcAD ELDHTAEE

A=1: Buy a bag of coffee grounds (Search Engine type)

B=1: Buy milk (PC type)
p(A=1|B=0)

p(B=1]A=1)p(A=1)

ANB

~ p(B=1| A=1)p(A=1)+ p(B=1| A=

10 30

30100 _ 10
10 30 ,50 70 710450

30 100 70 100

0)p(A=0)

AuUB

11/42
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Generative Model, Inversion with Bayes’ theorem,

and Data Assimilation

Posterior dist.—

X :simulation variables

Bayes’ Theorem

- p(X1 y)

Yy :data

Prior dist.

Simulation

Fitness of Simulation to Data

Prior distribution :Forward
p(x) —>x

Data distribution :Forward

p(y[x) x—3y

Build a generative model and Use Bayes theorem

Latent Variables:x

Posterior distribution:

p( | Ingerse

12/42
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Bayesian estimation

p(x]y) e ply [X)- p(X)

Posterior Likelihood Prior

Improved knowledge Feasibility of realization of y Belief

for given x

about values of x about values of x

Svclical structure

SFAMARRIEAL -2 ATLARERR
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Data Assimilation in Generalized State Space Model

State Vector (Simulation variables) At :sampling time of observations

L — L: nonlinear map &:simulatiozttirrie ste;
=1>>

g é: f (Xt 1 V ) Stochastmsmu!s;l(;)enl

yt — h ( Xt : Wt ) Observation model

| Measurement model
I

Missing value (Outlier)

IILI|||||||14||||||||¢|||||||ILL||||||| ,

time integration

e
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Chain Structure Graphical Model

Observable Vector yl y2 yt
Wi Yoon Yo}
Xgr Xgyeeor Xpeeos Xg |

‘ > N . > ——
Latent Vector X 0 X 1 X 5 X'[
—> System model Observation model

Suppose a statistical inference problem on a daily economic status given daily stock market data |
Today’s economic situation given ( = [ ])
yesterday’s stock market data p Xt yl:t—l - yl ! y2 12y yt—l
Today’s economic situation estimated ( = [ ])
by the stock market data up to today p Xt yl't yl ! y2 Yo yt
Today’s economic situation analyzed by —
using all available data when we look p Xt yl'T = yl y y2 y oo oy yT
back on the today in future

15/42 p(Xl'T | Vit )

State Vector and Concatenated State VVectors

1 ﬂm‘é@ﬂﬁ-ﬁ;\ﬂ-ﬂm
16/42 Wl w=rscemaem
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Two ways of DA method

maximize
estimate -
Y1 Yt-1 Yt Yt+1 YT Y1 Yi-1 Yt Y+l yT
X S o S S 3 S — O —
fo—% % o o} e N
X1 Xt—-1 Xt Xt+1 XT X1 Xt—-1 Xt Xt+1 XT
«Adjoint method (4DVar) eKalman filter (KF), smoother

*Extended KF (EKF)
*Ensemble KF (EnKF)
Particle filter (PF

STTRI| ST ARNRRNLL R-27LARRR

Wl st IR R

Optimization and Statistical Inference

f (X)) Dimension of X is huge — f (Xt) — p(Xt)
X = max{- f (X)} X, :_[ p(x,)- x.dx

*Representer method

17142
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Conditional Distribution Recursive fOrmU|a

P(X; | Ya) J :
prediction Yie =Y1r-- Yt
p(Xt—l | Yxt—l)—> p(Xt | yl't—_l) _ : :
| filtering
K DX ¥i) P65 Ye)

19/42

pred I Ctlve denSIty: I:)(Xt y ) Today’s economic situation given
].:t -1 yesterday’s stock market data
Today’s economic situation

fi Iter d e n S i ty: p (Xt ylt ) estimated by the stock market

data up to today

= . Today’s economic situation analyzed
SmOOther denSIty- p()(t le ) by using all available data when we
look back on the today in future

p(Xn+1 | y]_'n+1) NS

Prediction

thi 19;
<€ p(xt | Vit T.OO Ir&xm | yl'T) 4""p(XT | er)

PO | Yiea)
:J- p(xt y X | y]_'t—l)dxt—l

:J- P(X, |DXt—l’ Vi) POS | Ve JAX

P(X | X1, Yirg) = P(X | X, ;)| Markov property (1)
\4
:j p(xt | Xt—l) p(xt—l | y]_'t—l)PXt—l

/

Filter pdf at time t-1

19-1/42
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filtering

PO | Vi) Posterior, Belief
= P& | Yoo Vi)
_ PO Yl Vi)
P(Y: | Yiea)
_ p(Yt | Xy yl't—l)' p(Xt | yl't—l)

PCYe | Yiea) ap(yt Y = PO
N CARSECH I

PCY: | Vi)
_ P %) P(X | Vi)
[ POV 1%)- PO [ Yar )X .

Markov Property (2)

19-2/42

Smoothing

P(X; | Yir)
= | P0G X | Yar )X,

= [ PO% %10 Yar) - Pt | Yar )

- |
= | POG | %00 Vi) - PRy | Yar )Xy

) p(Xt’Xt+1 | y]_'t)

- P | Yar X,

' p(xt+1 | y]_'t) Tl e B

[ p(xt | yrt)' p(xt+1 | Xt,’ yl't)
P(%er V) /

Filter Dist.

p(xt+1 | Xt)
oy . d ° . v (j +
s [ ¥ J P(%ea | Yar) E(?ﬁlgﬁ) S

) p(xt+1 | Vit )dxt+1

Smoothing Dist.

19-3/42
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Sequential Data Assimilation

Estimate PDF of state vector X; or its moments (mean, variance, ...)
sequentially on each observation

b Vi (POG 1 Yud) = POG Y1 Yarmes i) )
P(Xo | V) [—— | PO% | Yies)
Simulation l -— yt

p(xt | yl:t) 7 p(xt+1 | ylt

Simulation l»
yt+1

EAHENRRIGE L AT LR

20142 Wl w=recemaem

Challenging problem: Huge dimension and inversion

« Data Assimilation = Estimation problem of state vector X;:

(system model) Xt = Ft (Xt—l’ Vt ‘Xo)

(observation model)  Y; = HtXt +W, or yt — ht (Xt )+Wt

— X, : All variables in simulation model
— Y, : All observed variables

— V, : Stochastic part to represent uncertainty of model (boundary
condition, ...)

— W,: Observation error
— V., W, : Normally Gaussian  xo: Initial condition

dimension | X;:]1 04~106 Y: 102~10°5 dim(x) >>dim(y,)

: F T —
21/42 Wl w=rscemaem
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Numerical representation of distribution

p(xt | yl't—l)i p(xt | yl't)i p(xt | yl'T) Trlije distribution
!

Monte Carlo approximation

Represent pdf by the actual realizations.

- N: # of particles

P(X | Yyq) = K1 = [Xt(l) t17- - :(t(l{\l—)l

PO | Vi) = X = X252, x|

22142 m gﬁﬁﬁﬁH%%
Prediction Step (Common in EnKF and PF)
(i) (1) [
State X ft(Xt—]Jt—l’Vt ) — Xt(|1)—1
() }N — L L }N
{Xt—llt—l i=1 {Xt|t—1 i1
4 & (2)
X
@ B tjt—1
Xt(—]§t—l .
2 ; :
Xt—ut—lj ",
@ : ensemble member of predictive PDF
: Xt(|?—1 ‘ : ensemble member of filtered PDF
(N) | bl
Xt—1|t—l'\\ (N)
| : ;;’tht—l Prediction step
L > Time
t—1 t =
23142 Bl szt o
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Filtering Step of PF

State X

‘ : ensemble member of predictive PDF
A

‘ : ensemble member of filtered PDF

_i likelihood
________ ‘</ o Observation: Yt

.............. |

"""" Calculate i
‘ (Y, 1 x{)

likelihood for t(li) — .
each particle Z pCY: | Xt(|tjzl)
j

; \ Filtered by a resample proportional to likelihood

(
Xper—— @ e .
______________ 6 (N)tlt Filtering step
1 Dy > Time

H sraorvi

y

%

time t+1 Xi 1 | yl:t—l) = Xt—:ut—l

YRATF LA RXR—IL

P(X | Y1) = Xy

P yt

time|t

(1)
WDy

P(X | Yu) = Xy
(i _ 1

AV4
— Dy —W

time T#1 ']'I KPR M-S 2TL AR

j| RSt B PR

o

This document is provided by JAXA.



H3MEFD/CFDM& 7 —2 v a v 7 31

Family of particle filters

« Kalman filter (EKF: Extended Kalman filter)
» EnKF: Ensemble Kalman filter (Evensen 1994)
 Particle filter
— SIR filter (e.g., Gordon et al. 1993, Kitagawa 1993)%
— Gaussian particle filter (e.g., Kotecha and Djuric 2003)
— Kernel filter (e.g., Hurzeler and Kunsh 1998)
— Merging particle filter (MPF)

% It encounters a problem called ‘degeneration’ in applying to high-dimensional models. (i.e., the
diversity of an ensemble is lost after repeating resampling procedures. )

s<Gaussian PF: 1) Each particle in filtered ensemble is drawn from a Gaussian function with the
mean and covariance of the forecast ensemble. 2) It requires high computational cost due to a
factorization of a high-dimensional covariance matrix in generating Gaussian samples.

. S— L ——
i

26/42 RSO PR

Particle filter
(SIR: Sequential Importance Resampling)

oo b oo

o e @ ®

A posterior (filtered) ensemble is obtained by resampling the
forecast ensemble with weights of likelihood. Thus, an ensemble
member is duplicated in the filtered ensemble according to its
likelihood.

27142 m ﬁ%’rﬁﬁﬁﬁ?ﬁ
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Merging particle filter (MPF)

Resampling (3N particles)

T B b Voo }
® o

SwSIN

28/42 m ﬁ%’rﬁﬂﬁ%ﬁ%

because it is a filtered ensemble obtained using normal PF.

Each number of a filtered ensemble is generated as a weighted
sum of n samples from the Nx N sample set as:

[“-\.‘w"'] !
ey

2

[
[
)

éll'l
]
i,

AR G- ARRRR

29/42 ’ il w=rsammeen
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MPF algorithm (2)

In order to ensure that the newly generated ensemble
approximately preserves the mean and covariances of the filtered
PDF, the merging weights «; are set to satisfy

> a;=1 > ai=1 (n<3suchthat o, =0 forall j)

i1 =L

where each ; Is a real number.
Then, a new ensemble approximation of the filtered PDF P(X, | Y1)

IS obtained as

‘ ly ]
=

s LY I
=1 N " ST I EPARNRRNELL WH-SATLARRA

,h

30/42 Wl RS BERZR PR

Resampling

Rarna ?

00000000
|

A concept of the “Islands” in GA is similar, but different.

H sraorvi
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Meta particle filter
(DPF: Distributed particle filter)

<
]
@

Inter-node resampling:

et S _- s Resampling between ensembles

a)(l)[ 1= e =
tjt—1 = 5 =  (not ensemble member) each of
; which consists of many particles

in a node. This ensemble is called
“super-particle”.

LN T )
DOGOEDD0n

i
¢na

When a weight for any super-
particles (i.e., nodes) Qi
exceeds 0.3, the inter-node
resampling procedure is applied.

neosdnOo

ngo
”W“

¢

Inter-node

2

>

P
Gaanneow
gaanneew

1 Wﬂ‘-‘aﬁh'?‘
32142 A0l st m
Result
1000 . _
64 cores i [
~#-PF + Meta-PF n
1/56.5 ——MPF ;
computational time =o=MPF + Meta-PF :
1 4 cor }
S 100 — | ,4 cores 1
L '8
[} b : . L
E N——
[
g } i
<3 2 cores 1 ‘
g | core |
& Each core has |
4,098particles. i
16 times ;
Each core has 256
particles.
1 T T T T T T L L 1 1
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Estimation error
1 Wﬂ‘-‘aﬁh'?‘
33/42 A0l st m
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Inside GPU:128~240 parallel computing

GPGPU’s power is equivalent to a computer with 128 1.2GHz processors

Device memory 4GB

Access speed 1/100 ( \

# of multiprocessor1 6""30 4Kb:1,00 \3
8x 16 = 128PE/ v | PE fEely
gister °
y PE memory
\
P n@y PE memory
R PE y PE rEO]y )_J
\ \ | Multiprocassor )J
Shared 4 000%& /
memory !

PE: Processing Element On tip memory

34/42 0l st e

y

time {11 /Lp Xeq | Vaea) 2 Xy
LJARHR—)L
POX| Yia) = thH
time [t
(1)
WDyt q
p(xt | y]_'t) = Xt\t
i 1
CTil n
mE 0 e
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Opteron + Tesla + ClearSpeed@ Higuchi Lab.

- fﬂiﬁ

Tesla (GPU/Cuda)

nVIDIA S1070 1U
GPU computing server
(1.6GiB/1.6GHz/410GB/s)

Host machine (CPU)

HP xw9400 Workstation
Dual-Core AMD Opteron(tm) Processor 2220

EFAENRRNLL AN-SATLARRR

m BB 35/42

SIS meets GPGPU.

e SIS on GPGPU designed for parameter estimation.

— Simulation is carried out on GPGPU.
— Parameter estimation is carried out on CPU.

PF PF SIS
Opteron 2220 Opteron2220 1core | Opteron2220 1core
1core + GPGPU(Tesla C870) | + GPGPU(Tesla C870)
100,000,000 8Days 12Hours 3Hours
(11E) (6.8 X 105sec) (4.5 X 10%sec) (1.0 X 10%sec)
1 X 15 X 67
1,000,000,000 2.6 Months? 5 Days? 28Hours
(1018) (1.0 X 105sec)

e AT HENMRMEL M- SaTLRTRN

S0l et BT R PR
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HPC of our group

Computation Time of Shotgun Stochastic Search for Circadian Model using 10® Particles

' HGC SuperCom - |
ISM Pleiades
ISM Ismrx
g
k2 0.01
- [
@ 4
a ]
m 4
=
g 2,880 |
a / (Nehalem)
g ]
]
0.001 - (Xeon) .
I I I I I I TR | I
100 200 1000 2000
# of Cores
SEpen AN 908207 A AR
37/42

3
K

Tl = 2R 2R
Next-Generation of Supercomputer in Japan at Kobe

H21.10.01

B Grand Challenge: %!ﬁ!,ﬂ!!

Japanese Government will spend more -- Nanotech (Institute for Molecular Science)
than 1 billion US$ for this national . .
project. It has more than 600,000 cores. - Llfe SCIence (RIKEN)
ST APAANARILL ST AR
38/42
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Research projects in progress by our group

- Coupled Ocean-Atmosphere model
- Tsunami model

= Ocean tide
- 3D structure of ring current
- Genome informatics

- Marketing (with agent simulations)

FPATNRRIYEL A2 ATL AR 43
39/42
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TIPS: A choice of the data assimilation methods

Reduction of degree of freedom

Degree of Freedom of the system

Genome
Informatics

Ocean and atmospheric Large
science

Information provided by data
. . at each time- integration step
Nonlinearity

of the simulation.

40/42
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Email: higuchi@ism.ac.jp

Homepage:
http://daweb.ism.ac.jp/

FPRATRIRRIYEE L M-S ATLE
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