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In optical astronomy, physically achievable spatial resolution is limited by the physical telescope size, i.e. the 

diffraction limit. However, launching very large telescopes into space is impractical, therefore, interferometric 

observations using satellite formation flight are often proposed. In order to obtain an image with an interferometer, it 

is necessary to change the distance and relative orientation between the telescopes during the observation. In 

conventional formation flight interferometers, fuel is consumed in this process. In this work, the authors propose to 

place a formation flight interferometer on an artificial halo orbit around the Sun-Earth L2 orbit, in which the solar 

radiation pressure is used as the only control input. With this suggestion, it is expected to realize the maintenance 

control of the artificial halo orbit and relative position control without consuming fuel. 

 

太陽-地球系 L2 点近傍におけるフォーメーションフライトでの太陽輻射圧

を利用した相対位置制御と小円ハロー軌道の維持について 

宇宙機のフォーメーションフライトは大型の宇宙機の機能を小型の宇宙機に分散させるという

概念である．この手法は大型望遠鏡の機能を分散した干渉計観測と親和性が高い．干渉計観測

で像を得るためには，観測中に望遠鏡同士の距離を変える必要がある．従来の検討ではこの過

程で燃料を消費してきた．そこで，本研究では，観測中に推進剤を使用せずにフォーメーショ

ンフライトを制御することを提案する．具体的には制御入力に太陽輻射圧を用い，太陽-地球

系第 2 ラグランジュ点周りの基準軌道維持とフォーメーションの相対位置の同時制御を行う． 

 

1. Introduction 

In recent years, the performance of telescopes on 

Earth has been approaching its limits due to diffracti-

on limitations and atmospheric diffusion. Therefore, 

higher performance can only be achieved by placing 

larger telescopes in space. However, it is not practical 

to launch a large telescope. Therefore, as a distributed 

approach, interferometric observation using satellite 

formation flights is considered to be a promising 

method. In interferometric observations, multiple 

telescopes are placed at different distances and the 

signals received by each telescope are combined to 

obtain an image of the celestial body. From the 

principle of interferometry, it is possible to estimate 

the luminance distribution of a celestial body by 

collecting various baseline vectors. Here, the various 

baseline vectors mean that the vectors connecting the 

telescopes have various directions and lengths. In 

order to perform interferometric observations with 

satellites, it is necessary to design a formation flight 

orbit in which two satellites collect various baseline 

vectors. In conventional formation flight interfero-

metry studies, fuel is consumed in this process. 

This study proposes a fuel-free orbit by placing the 

interferometric observations in formation flights 

around the second Lagrange point of the Sun-Earth 

system (SEL2). The Lagrange points are the five 

stationary solutions of the circularly restricted three-

body problem. They are known to be a dynamically 

equilibrium points. This characteristic indicates that 
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the thrust required to maintain the orbit and change 

the formation size is small. Therefore, the use of solar 

radiation pressure (SRP), which is a small thrust 

force, as a control input is considered to be able to 

control the orbit without using fuel. In fact, many 

studies on station keeping and formation keeping 

using SRP around Lagrange points have been carried 

out to date, including Bookless and McInnes [1], 

Shehid [2], etc. However, the reference orbit that has 

been the subject of these studies is a halo orbit. The 

halo orbit requires less control input to maintain, but 

the size of the orbit is about 1 million kilometers. One 

advantage of conducting interferometric observati-

ons around the Lagrange point is that the thermal and 

communication environments are stable. These can 

be further stabilized by designing a halo orbit with a 

reduced radius. Tarao [3] investigated the possibility 

of reducing the size of the halo orbit arbitrarily. 

Tanaka [4] showed that the thrust to maintain the 

orbit can be provided by SRP. This orbit is called a 

small-circle halo orbit (SCHO), it can be concept-

ually represented as shown in Figure 1, which shows 

that it is an orbit that can make the best use of the 

advantages of SEL2. However, few researchers have 

studied formation flight with SEL2 using SCHO as a 

reference orbit. In this study, a SCHO is designed as 

a reference orbit, and two satellites are designed to 

orbit around it to obtain a baseline vector suitable for 

interferometric observations. Furthermore, the purp-

ose is to maintain a SCHO and simultaneously cont-

rol the relative position when only the acceleration 

due to SRP is used as a control input. Since the 

acceleration by SRP can be controlled by the attitude 

of the spacecraft toward the sun, the attitude of the 

spacecraft is used as the control input in this study. 

2. Orbit Design 

2. 1 Dynamics of System 

In this chapter, the SCHO and formation flight 

relative orbit around SEL2 will be designed. First, the 

definition of coordinates is shown in Figure 2. In this 

study, the circular restricted three-body problem is used 

to describe the motion around SEL2. Its equation of 

motion is expressed as  

𝑥̈ − 2𝑦̇ = −
𝜕𝑈̅

𝜕𝑥
+ 𝑎𝑥  

(1) 𝑦̈ + 2𝑥̇ = −
𝜕𝑈̅

𝜕𝑦
+ 𝑎𝑦 

𝑧̈ = −
𝜕𝑈̅

𝜕𝑧
+ 𝑎𝑧 

𝑈̅ = −
1

2
((𝑥 + 1 − 𝜇 + 𝛾2)2 + 𝑦2)

− (
1 − 𝜇

𝑟𝑆
+

𝜇

𝑟𝐸
) 

(2) 

𝑟𝑆 = √(𝑥 + 1 + 𝛾)2 + 𝑦2 + 𝑧2 
(3) 

𝑟𝐸 = √(𝑥 + 𝛾)2 + 𝑦2 + 𝑧2 

Here, 𝛾2 is the distance from the Earth to the SEL2, 𝑟𝑆 

is the distance from the Sun, and 𝑟𝐸  is the distance 

from the Earth to the satellite. The linearized equation 

of motion is expressed as follows [4]. 

𝑥̈ − 2𝑦̇ − (1 + 2𝑐2)𝑥 = 𝑎𝑥

𝑦̈ + 2𝑥̇ + (𝑐2 − 1)𝑦 = 𝑎𝑦  

𝑧̈ + 𝑐2𝑧 = 𝑎𝑧   

 (4) 

𝑐2 =
1

𝛾3
(𝜇 +

(1 − 𝜇)𝛾3

(1 + 𝛾)3
) (5) 

The right-hand side is the acceleration of each axis, and 

the left-hand side, 𝑐2, is a constant. From Eq. (4), in the 

orbit design of the circular restricted three-body prob-

lem, an arbitrary orbit is first designed. The acceleration 

input required to create the orbit is roughly obtained by 

substituting it into the linear equation of motion. Next, 

the obtained acceleration is expressed in terms of the 

satellite attitude angle to be realized in SRP. 

 

 
Fig. 2. Coordinate definition. 

 

Fig. 1. Concept of SCHO and halo orbit around 

SEL2. 
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2. 2 Formulation of Solar Radiation Pressure 

 The SRP of a spacecraft depends mainly on the sate-

llite mass, area, optical characteristics of the satellite 

surface, and attitude angle. The optical properties can be 

divided into three attributes, which are assigned as Table 

1. Optical properties are based on the IKAROS parame-

ters [5]. The acceleration by SRP is expressed by Eq. (6) 

[4]. Here, the attitude angle is defined as shown in Fig. 

3. The 𝐬 in Eq. (6) is the unit direction vector from the 

spacecraft to the Sun. The radius of the orbit length of 

the SCHO is much smaller than the distance from the 

Sun to the SEL2, it can be approximated as Eq. (7). 

𝐚𝑠𝑟𝑝 = −
𝑃𝐴

𝑚
(𝐬 ∙ 𝐧) [(𝐶𝑎𝑏𝑠 + 𝐶𝑑𝑖𝑓)𝐬

+ (
2

3
𝐶𝑑𝑖𝑓 + 2(𝐬 ∙ 𝐧)𝐶𝑠𝑝𝑒) 𝐧] 

(6) 

𝐬 ≈ [
−1
0
0

] (7) 

Also, 𝐧 is the unit normal vector from the surface of 

the spacecraft when the spacecraft is a flat panel model. 

This can be written as Eq. (8) depending on the attitude 

angle 𝜓  and 𝜙 . If 𝜓  and 𝜙  are approximated as 

small, it can be rewritten as  

𝐧 = [
− cos 𝜙 cos 𝜓
− cos 𝜙 sin 𝜓

sin 𝜙
] ≈ [

−1
−𝜓
𝜙

] (8) 

From the above, Eq. (6) can be rearranged by substi-

tuting 𝐬  and 𝐧 . The acceleration due to SRP can be 

expressed in conjunction with the attitude angle as 

shown in Eq. (9). 

𝐚𝑠𝑟𝑝 ≈ [
𝑘1

𝑘2𝜓
−𝑘2𝜙

] (9) 

where 𝑘1 and 𝑘2 are constants formed by the optical 

properties as 

𝑘1 =
𝑃𝐴

𝑚
(𝐶abs +

5

3
𝐶dif + 2𝐶spe) 

(10) 

𝑘2 =
𝑃𝐴

𝑚
(

2

3
𝐶dif + 2𝐶spe) 

Substituting Eq. (9) into the acceleration input gives the 

attitude history needed to create an arbitrary orbit. 

 

 
Fig. 3. Attitude angle. 

Table 1. Solar sail properties. 

Surface area 𝐴 [m2] 16 

Mass 𝑚 [kg] 300 

Surface optical 

properties 𝐶∗[-] 

𝐶abs 0.163 

𝐶dif 0.118 

𝐶spe 0.719 

 

Table 2. Parameters of orbits. 

Semi-major axis 𝐴𝑧 [km] 14,000 

Angular velocity [deg/day] 1.9895 

Initial position 𝑟𝑅𝐼 [m] 5 

Spread speed 𝑎𝑅𝐼 [-] 3.435 ∙ 10−10 

Chaser angular velocity 𝜔𝑅 

[deg/day] 
79.58 

 

2. 3 Reference and Relative Orbit 

 The orbit is determined arbitrarily within the range that 

can be expressed by the SRP, or attitude angle. The first 

step is to design a SCHO as a reference orbit. The 

SCHO requires control input to maintain, but for the 

purpose of obtaining a relative orbit suitable for inter-

ferometric observation, the control input for maintain-

ing the orbit should be as small as possible. The SCHO 

is shown in Eq. (11). By setting the various parameters 

as shown in Table 2, the orbit can be maintained with 

minimal input. 𝐴𝑧  is semi-major axis, and the smaller 

the radius, the smaller the input required to maintain the 

orbit. Therefore, it was set in consideration of the earth's 

shadow. In addition, 𝜔 is the orbital angular velocity, 

which was determined by substituting Eq. (11) for 𝑦 

and 𝑧 in Eq. (4) and solving it jointly. 

𝑥 = −𝐴𝑥 cos(𝜔𝑡) + 𝑥𝑒 

𝑦 = 𝛼𝐴𝑥 sin(𝜔𝑡)            

𝑧 = 𝐴𝑧 cos(𝜔𝑡)              

 (11) 

𝛼 =
𝜔2 + 1 + 2𝑐2

2𝜔
 

(12) 

𝐴𝑥 =
𝐴𝑧

𝛼
 

𝑥𝑒  represents the shift of the equilibrium point in 

consideration of SRP. Assuming that the angle is a small 

angle, there will be a constant SRP in the 𝑥 direction, 

which can be expressed as Eq. (13). 

𝑥𝑒 = −
𝑘1

1 + 2𝑐2
 (13) 

The next step is to design the relative orbit. For inter-

ferometric observations, it is desirable to have an orbit 

with a continuously expanding formation size. This is 

because it is possible to collect various baseline vectors 

efficiently. Therefore, orbits were designed for each of 
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the two satellites with respect to the reference orbit as 

shown in Eqs. (14) and (15). 

𝑥𝑅 = 0                                       
𝑦𝑅 = (𝑟𝑅 + 𝑎𝑅𝑡) sin(𝜔𝑅𝑡)    
𝑧𝑅 = −(𝑟𝑅 + 𝑎𝑅𝑡) cos(𝜔𝑅𝑡)

 (14) 

𝑥𝑅 = 0                                       
𝑦𝑅 = −(𝑟𝑅 + 𝑎𝑅𝑡) sin(𝜔𝑅𝑡)

𝑧𝑅 = (𝑟𝑅 + 𝑎𝑅𝑡) cos(𝜔𝑅𝑡)   
 (15) 

By superimposing these equations on the equations for 

the SCHO, the absolute orbits of the two satellites were 

designed. 

𝑥 = −𝐴𝑥 cos(𝜔𝑡) + 𝑥𝑒                                   

𝑦 = 𝛼𝐴𝑥 sin(𝜔𝑡) + (𝑟𝑅𝐼 + 𝑎𝑅𝐼𝑡) sin(𝜔𝑅𝑡)

𝑧 = 𝐴𝑧 cos(𝜔𝑡) − (𝑟𝑅𝐼 + 𝑎𝑅𝐼𝑡) cos(𝜔𝑅𝑡)  

 (16) 

𝑥 = −𝐴𝑥 cos(𝜔𝑡) + 𝑥𝑒                                   

𝑦 = 𝛼𝐴𝑥 sin(𝜔𝑡) − (𝑟𝑅𝐼 + 𝑎𝑅𝐼𝑡) sin(𝜔𝑅𝑡)

𝑧 = 𝐴𝑧 cos(𝜔𝑡) + (𝑟𝑅𝐼 + 𝑎𝑅𝐼𝑡) cos(𝜔𝑅𝑡)  

 (17) 

By substituting Eqs. (16) and (17) for the orbits into Eqs. 

(6) and (7), the acceleration and attitude required to 

create the orbit can be obtained. However, it is difficult 

to follow the designed orbit even if it executes the 

attitude angle calculated in this way. Therefore, in this 

paper, LQR feedback control is applied. 

 

3. Feedback Control 

When the state vector is 𝐱 = [𝑥 𝑦 𝑧 𝑥̇ 𝑦̇ 𝑧̇]𝑇 

and the control vector is 𝐮 = [𝜓 𝜙]𝑇, Eq. (4) together 

with Eq. (9) can be expressed as Eq. (18), where 𝐀 and 

𝐁  are constant coefficient matrices containing 𝑐2 ,𝑘1 , 

and 𝑘2. 

𝐱̇ = 𝐀𝐱 + 𝐁𝐮 (18) 

The designed orbit is denoted as nominal orbit 𝐱𝐧𝐨𝐦, 

and the attitude angle used to create the orbit is denoted 

as nominal control 𝐮𝐧𝐨𝐦 . The following Eq. (19) is 

obtained by subtracting these from Eq. (18). 

𝐱̇̃ = 𝐀𝐱̃ + 𝐁𝐮̃ (19) 

𝐱̃ = 𝐱 − 𝐱𝐧𝐨𝐦  and 𝐮̃ = 𝐮 − 𝐮𝐧𝐨𝐦 , which represents 

the difference from the nominal. Here, an optimal 

regulator is introduced to minimize this difference. The 

optimal regulator minimizes the objective function as 

follows. 

𝐽 = ∫ (𝐱̃𝑇𝐑𝟏𝐱̃ + 𝐮̃𝑇𝐑𝟐𝐮̃)𝑑𝑡
∞

0

 (20) 

𝐑𝟏  and 𝐑𝟐  are constant symmetric matrices that 

represent the weights. In this case, the optimal feedback 

can be expressed as Eq. (21). 

𝐮̃ = −𝐑𝟐
−1𝐁T𝐏𝐱̃ (21) 

where 𝐏 is a matrix that satisfies the following Riccati 

equation. 

𝐏𝐀 + 𝐀𝑇𝐏 − 𝐏𝐁𝐑𝟐
−1𝐁𝑇𝐏 + 𝐑𝟏 = 0 (22) 

Stabilize the orbit by adding the control quantity vector 

given by Eq. (21) to the feed-forward control quantity 

obtained in Chapter 2.3. 

 

4. Simulation 

In this chapter, the results of numerical simulations are 

presented to see if the design orbits shown in Chapter 2 

can be realized by the control method. In this simulation, 

system dynamical equations are given in non-linear 

circular restricted three-body problem. The propagation 

time is set to 1 period of SCHO. The results are shown 

in Fig. 4 to 7. 

First, Fig. 4 shows the orbit of the Chaser 1 satellite. It 

can be seen that SCHO is maintained. Next, Fig. 5 

shows the relative orbit of Chaser 1, which also follows 

the orbit designed in Chapter 2. Finally, Figs. 6 and 7 

show the attitude angle histories of the two satellites. It 

can be seen that the attitude angles of the satellites are 

represented by long period and short period oscillations. 

This indicates that long-period oscillation is necessary 

to maintain the orbit of SCHO and short-period 

oscillation is necessary to form a relative orbit. In any 

case, the values are realistic, and it can be said that this 

formation flight can be achieved only by the accele-

ration by SRP. However, the maximum angle is around 

30 degrees, which threatens the assumption of small 

angle. The elimination of the small angle approximation 

is a future issue. 

 

 
Fig. 4. The orbit of the Chaser 1. 
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Fig. 5. Relative orbit． 

 

 
Fig. 6. The attitude angle history of Chaser 1． 

 

 
Fig. 7. The attitude angle history of Chaser 2． 

 

5. Conclusion 

In this paper, a formation flight suitable for interfero-

metric observation in SCHO was designed. For the 

designed orbits, only SRP was used as a control input. 

It was confirmed that relative position control and 

station keeping were possible simultaneously. As a 

control method, the SRP was changed by changing the 

attitude angle. In addition, LQR control was used for 

control. 

As future work, it is necessary to design a control 

system that is closer to reality by not using the small-

angle approximation and by solving the dynamics of the 

attitude and the orbit in a coupled manner. 
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