

「EFDと飛行シミュレーション - 次世代動的風洞実験法の開発に向けて」

EFD and Flight Simulation

Towards the Development of the Next-Generation Dynamic Wind-Tunnel Testing

浅井圭介,永井大樹,近野 敦

Keisuke Asai, Hiroki Nagai, Atsushi Konno Tohoku University Sendai, Japan

Akihabara Convention Hall, Tokyo, Japan January 25, 2010

- Background
- Role of EFD in Flight Simulation
- Dynamic Wind-Tunnel Testing (DWT)
 - Fundamental
 - Current Techniques (Forced Oscillation, Free-Flight, etc)
- Evolution of DWT
 - New requirements and new technologies
- Future of DWT
 - Research Plan at Tohoku University

Aircraft Equations of Motion

Translation (3 degrees of freedom) $X - mg\sin\Theta = m(U + OW - RV)$ $Y + mg\cos\Theta \cdot \sin\Phi = m(\dot{V} + RU - PW)$ $Z + mg\cos\Theta \cdot \cos\Phi = m(\dot{W} + PV - OU)$ Rotation (3 degrees of freedom) $L = I_{y}\dot{P} - I_{zy}(\dot{R} + PQ) - QR(I_{y} - I_{z})$ Moment (L, M, N) $M = I_{v} \dot{Q} - I_{zx} (R^{2} - P^{2}) - RP(I_{z} - I_{x})$ $L = I_z \dot{R} - I_{zx} (\dot{P} - QR) - PQ(I_x - I_y)$

Aerodynamic Force (X, Y, Z)Angular velocity (P, Q, R)Euler angular velocity (ϕ , θ , ψ) Moment of inertia (*Ix*, *Izx*, •••)

Exhibits a strong **nonlinearlity**

- 1) Computer simulation: solve these nonlinear equations numerically
- 2) Analytical approach
 - •Linearize the EoM (small disturbance) $U = u_0 + u, P = p_0 + p, \Theta = \theta_0 + \theta,...$
 - Express Aerodynamic force terms with other parameters (Bryan's method)
- \rightarrow Enable us to investigate the "modes" of aircraft motion

Asai, Nagai, Konno (2010)

Aerodynamic Force and Moment Representation Concept of "Stability Derivative"

Aerodynamic forces and moments can be expressed by means of a Taylor series expansion of the perturbation variables (velocities, angular velocities, accelerations, etc.) about the reference equilibrium condition.

$$\Delta X = \frac{\partial X}{\partial u}u + \frac{\partial X}{\partial \dot{u}}\dot{u} + \frac{\partial X}{\partial v}v + \frac{\partial X}{\partial \dot{v}}\dot{v} + \dots + \frac{\partial X}{\partial r}r + \frac{\partial X}{\partial \dot{r}}\dot{r}$$
$$= X_{u}u + X_{\dot{u}}\dot{u} + \dots + X_{r}r + X_{\dot{r}}\dot{r}$$

The term, X_u ..., is called the "<u>Stability Derivative</u>" and is evaluated at the reference flight condition.

George H. Bryan (1864 - 1928)

Retain only the linear terms and also neglects some first-order terms that have small contributions to aircraft motion

- 1) Motion in the symmetric plane \rightarrow Y, L, N=0 and their derivatives=0
- 2) Lateral motion \rightarrow neglect derivatives with respect to forces and moments in the symmetric plane (X, Z, M)
- 3) Neglect derivatives with respect to accelerations except Mv and Zv
- 4) Neglect other terms (e.g. Xq) that are expected to be small from the physical viewpoint

43

Dynamic stability

Longitudinal motions

- Short-period mode (several seconds)
- Iong-period or Phugoid mode (order of 30 or more seconds)
 - ... gradual interchange of potential and kinetic energy about the equilibrium altitude and airspeed

Lateral motions

- Spiral mode
 - ... Directional stability (Cn β) too large, while lateral stability (Cl β) inadequate \rightarrow <u>SPIN</u>
- Rolling mode • Dutch Roll mode ... Lateral stability (Cl β) too large, compared with directional stability (Cn β) \rightarrow degrades pilots' and passengers' comfort \rightarrow stability augmentation system (Yaw Damper) • Phugoid • Phugoid • Dutch Roll • Dutch Roll • Dutch Roll • Dutch Roll • Stability • Cl β) \rightarrow degrades pilots' and passengers' comfort • Spiral stability • Cl β • Cl β

USAF Digital DATCOM

Computer program to calculate the static stability, control and dynamic derivative characteristics of fixed-wing aircraft, based on an input file containing a geometric description of an aircraft.

Ref: "the USAF Stability and Control Datcom" AFFDL-TR-79-3032 (1979)

Empirical method

Source:http://www.pdas.com/datcom.htm

Dynamic Wind-Tunnel Testing (DWT)

Objectives:

- 1) Dynamic derivative
- 2) Spin Characteristics
- 3) Flight trajectory (e.g. store separation)
- 4) Tuning control laws (active control test)

Asai, Nagai, Konno (2010)

Forced Oscillation Testing

Forcing a model to perform a single-degree-of-freedom angular oscillation about its pitch, yow, and roll axes by means of an electric or hydraulic moter and the output of the balance inserted in the model is processed to measure dynamic derivatives. θ

写真引用: NASA Langley Research Center

Forced Oscillation Testing at

Kobashi, et al, NAL TR-196 (1970)

Length:1085mm, Weight: 9.395kg CFRP (skin) + Aluminum Alloy (frame)

Miwa and Ueno, JAXA-RR-03-021 (2004)

Roll ±1deg@30.0Hz ±3deg@17.3Hz

±3deg@17.3H

図2 Roll加振装置構成図

表6 航技研2m遷音速風洞において求める動安定微係数				
Apparatus	Primary	Damping	Cross	
	Oscillation	Derivatives	Derivatives	
Pitch/Yaw	Pitching Oscillation	$C_{mq} + C_{m\dot{lpha}}$		
Pitch/Yaw	Yawing Oscillation	$C_{nr} - C_{n\dot{\beta}}\cos\alpha$	$C_{lr} - C_{l\dot{\beta}} \cos \alpha$	
Roll	Rolling Oscillation	$C_{lp} + C_{l\dot{eta}} \sin lpha$	$C_{np} + C_{n\dot{\beta}}\sin\alpha$	

Free Flight (NASA 30ftx60ft)

http://oea.larc.nasa.gov/PAIS/Partners/graphics/FA_18/fig07.jpg

http://www.nasa.gov/images/content/137810main_blended_wing_hires.jpg

Asai, Nagai, Konno (2010)

Dynamically-Scaled WT Model

Dynamically Scaling

In order for a subscale body to appropriately represent the motion and response of a full scale body, the test vehicle is required to be dynamically scaled. This means that not only is the test vehicle scaled dimensionally, but also in weight, inertias, control, and actuation systems.

Quantity	Scale Factor	
Linear dimension	N	
Relative density (M/pL ³)	1	
Froude number V/(Lg) ^{0.5}	1	
Weight	N³/ σ	
Moment of inertia	N⁵/ σ	
Linear velocity	N ^{0.5}	
Linear acceleration	1	
Angular velocity	N ^{-0.5}	
Time	N ^{0.5}	

N: model-to-airplane scale ratio

- $\boldsymbol{\sigma}$: the ratio of air density at airplane
- altitude and that at the model altitude

Gainer and Hoffman, "Summary of Transformation Equations and Equations of Motion Used in Free-Flight and Wind Tunnel Data Reduction and Analysis," NASA SP-3070, 1972.

Ref: Croom. Et al; "Dynamic Model Testing of the X-31 Configuration for High Angle-of-Attack Flight Dynamics Research", AIAA-1993-3674.

Nonlinear Flight Dynamics - Wing Rock

A **wing rock** is a **self-excited rolling oscillation** of a delta wing that is induced by unsteady aerodynamic forces.

- -Dynamics of leading-edge separation vortices
- -Vortex breakdown (bursting)
- -Hysteresis (energy dissipation or addition)

F-18 High Alpha Research Vehicle (HARV)

Becomes closely integrated with flight control system \rightarrow Requires extensive ground and flight simulation

R.C. Nelson (Notre Dame)

Quest, T., et al, AIAA-91-3267 (1991)

Asai, Nagai, Konno (2010)

Progress in Unsteady CFD

Earth Simulator (JAMSTEC)

633-018 Airfoil using Building-Cube

Nishimoto et al, AIAA-2010-0710

Asai, Nagai, Konno (2010)

Digital Flight Dynamics

- NASA Langley Research Center -

An ability to simulate in a computer a flight maneuver satisfying the governing flow equations, the aircraft aeroelastic characteristics, the 6-DOF equations, the flight control system, and the propulsion system.

AIAA 2007-6573, J. J. Chung, et al. "Development and Assessment of CFD Methods for Integrated Simulation of Air Vehicle Stability and Control"

16

"THE ROLE OF COMPUTERS IN AERODYNAMIC TESTING"(1980)

Computers and fluids vol.8, pp.71-99

"THE ROLE OF COMPUTERS IN AERODYNAMIC TESTING"

Jack D. Whitfield, Samuel R.Pate, William F. Kimzey and David L. Whitfield Sverdrup/ ARO,Inc., AEDC Division, Arnold Air Force Station, TN 37389, U.S.A. (Received 13 April 1979)

1.Introduction

2.Critical areas in today's experimental aerodynamic facilities Data accuracies. Operational efficiency.

Simulation.

1. The current role of the computer in experimental aerodynamic testing

(1)Captive trajectory system testing.

(2)Self-optimizing, flexible wing testing.

(3)Simulation of flight maneuvers.

- (4)Constant aerodynamic parameter testing.
- (5)Flow-field measurements.

2. Current uses of computational fluid dynamics(CFD) in aerodynamic testing facilities

3. The future role of computational fluid dynamics in aerodynamic testing

5-1 Corrections for model support system interferences

5-2 Application of CFD to change our philosophy of facility operations

5-3 Development of adaptive walls for transonic wind tunnels

5-4 Computer technology applied to free-jet engine-airframe integration testing

6. Concluding remarks

References

CONCEPT OF ADVANCED TECHNOLOGY WT FACILITY Merging of WT and Computer (AEDC (1980))

EFD + Flight Dynamics → "Flight Test in WT"

Simulation of Flight Maneuvers (AEDC)

The computer is an integral part of the wind tunnel test and several subsystems are combined into a computer-controlled closed loop that allows banks, turns, and stalls to be simulated in an almost hands-off operation.

Asai, Nagai, Konno (2010)

Figure 12: Fighter model suspended upside down from the MPM

- 6 DoF parallel kinematics (high stiffness)
 Use of 6 linear electromagnetic motors
- (high accuracy/high dynamics)
- Max driving frequency <u>3Hz/5deg</u>

7th axis (pitching)

DNW_Annual_Report_2004

Bergmann A et al. MPM. USA Patent Application Pub. No. US 2006/0254380 A1, November 2006.

Asai, Nagai, Konno (2010)

Principle of PSP - Oxygen Quenching

Luminophore: Platinum Octaethylporphyrin (PtOEP)
 Binder: Polydimethylsiloxyan (PDMS)

P/P_{ref}

UV illumination

PSP/TSP measurement system (imaging)

PSP camera images

PSP camera images integrated on a model grid.

Image Acquisition (4 cameras)

DLR F6 model

Excitation Light

Fast Responding PSP Formulation

- Porous Polymer
 Optrod F1,F2 (1994, 1997)
 Asai et al. (2000)
- TLC Plate Baron et al. (1993)
- Polymer/Particles
 Ponomarev et al. (1998)
 Scroggin et al. (1999)
 Klein (2006)
 Kameda, et al. (2008)
- Anodized Aluminum Asai et al. (1997) Sakaue et al. (1999, 2006)

Response time = up to O(10µsec)

Asai, Nagai, Konno (2010)

oscillating fence, rotating wings (wing in rocking motion) , acoustic resonance (Hartman tube), \ldots

Unsteady Pressure Measurement on a Delta Wing in Rocking Motion (Hirose, et al. AIAA 2007-124)

in Rocking Motion (Hirose, et al. AIAA 2007-124) [deg 10 M=0.5, α=35 [deg]

Trigger Level

Comparison of pressure distribution \sim Roll Free \sim

EFD[CDF] condtions : M=0.5, α=35[deg], Roll Free

Prof. Koji Miyaji Yokohama National Univ. Aerospace System Laboratory

Research Proposal for the Development of <u>Next-Generation DWT</u> (Tohoku Univ.)

starting in 2010 (we hope!)

Robot Manipulator

(seeds)

- Image-based Measurement Techniques
- Digital Flight Dynamics

"Hybrid Flight Simulator"

Hybrid Motion Simulator HEXA 97 (Uchiyama/Konno Lab., Tohoku Univ.)

Fully parallel robot with rigid links that confer its high rigidity positional accuracy by virtue of the parallel link configurations, reducing the end effector errors

Table A.1: Part sizes of HEXA robot

Items	Sizes mm	Symbols
Offset of the rotational axis of motors	170	Н
Length of arm	260	L
Length of rod	480	M
Distance between ball joints	80	2a
Offset of the central axis of ball joints	40	h

Table A.1: Major specification the HEXA robot.

Parameter	Size [mm]	Symbols
Offset of the rotational axis of motors	170	H
Length of arm	260	L
Length of rod	480	M
Distance between ball joints	80	2a
Offset of the central axis of ball joints	40	h

Table A.2: Standard specification of the HEXA robot.

Parameter	Value-units	
Maximum velocity	5.94 [m/s]	
Maximum acceleration	22 G	
Relative accuracy	0.01 [mm] (Calculated value)	
Adept motion cycle time	0.465 [s/cycle]	
Weight capacity	10 [kg]	
Total weight	60 [kg]	

Hybrid Motion Simulator HEXA 97 (Uchiyama/Konno Lab., Tohoku Univ.)

Fig. A.8: Coordinate systems of HEXA robot

Fig. 2.2: Overview of a parallel robot HEXA

Hybrid Motion Simulator HEXA 97 (Uchiyama/Konno Lab., Tohoku Univ.)

Figure A.7: Configuration of the robot control system [46].

Hybrid Motion Simulator HEXA 97 (Uchiyama/Konno Lab., Tohoku Univ.)

Hybrid Motion Simulator HEXA97

Research Proposal for the Development of Next-Generation DWT (Tohoku Univ.) starting in 2010 (we hope!)

"Hybrid Flight Simulator"

To be presented by D. Yorita at 14th ISFV (June 2010)

EFD+Flight Dynamics \rightarrow Hybrid Simulator

- Use of State-of-Art Technologies Robot Technology (1DoF→6(+α)DoF) Image-based 3D measurement
- New role of DWT Provide system model (not test data) Tool for "Virtual Flight Testing"

Questions?

asai@aero.mech.tohoku.ac.jp

Acknowledgements:

D. Yorita, D. Sugimoto, A.Toyoda (students)
K. Kita, Y. Hirose (ex-students)
Prof. K. Nakahashi, Prof. S. Obayashi, Prof. D. Numata (Tohoku Univ.)
Prof. K. Seo (Yamagata Univ.)
Prof. K. Miyaji (Yokohama Nat'l University)
Prof. M. Kameda (Tokyo Univ. Agriculture and Technology)
K. Nakakita, Dr. K, Mitsuo, Dr. M. Yanagihara (JAXA)
Prof. T. Liu (Western Michigan Univ., USA)
Prof. J. W. Gregory (Ohio State Univ., USA)

Dr. C. Klein (DLR,Göttingen, Germany)

Dr. T. Löser (DNW/DLR, Braunschweig, Germany), et al.