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ABSTRACT 
Evolutionary algorithms (EAs) have been widely used in design optimization that often requires expensive evaluations 

(e.g., computational fluid dynamics: CFD). An artificial neural network (ANN) based surrogate model is used in the EA 
optimization routines to reduce the time for these expensive evaluations. The ANN can model the relationship between 
many design variables and objective functions in a single surrogate model, unlike other surrogate models (e.g., Kriging). 
In this study, a genetic algorithm (GA) coupled with a dynamically retrained ANN is proposed and applied to multi-
objective transonic airfoil shape optimization where aerodynamic performances are evaluated with CFD. The proposed 
method is shown to converge more quickly towards the Pareto-optimal front with fewer CFD evaluations compared to a 
stand-alone GA, proving the efficacy of ANN as the surrogate model in the GA. 
 

I. Introduction 
Aerodynamic design of transonic wing is important 

since most of commercial aircrafts today cruise at transonic 
speeds, near the speed of sound. The aerodynamic 
characteristics of the wing are strongly affected by the 
shape of its airfoil section.1 Aerodynamic shape 
optimization of transonic airfoil (ASO-TA) thus becomes 
a crucial task to find candidates of shapes with optimum 
aerodynamic performance, given the set of design variables, 
objective, and constraint functions. One objective of ASO-
TA is drag minimization to reduce fuel consumption at 
cruise. However, it comes with a tradeoff with lift, for 
example. The induced drag increases in proportion to the 
square of lift. Zero induced drag means zero lift. This study 
includes several ASO-TA problems with two objectives: 
drag minimization and lift maximization. 

Population based metaheuristic approaches, such as 
evolutionary algorithms (EAs)2, have been used to solve 
multi-objective optimization problems (MOPs) due to their 
ability to find multiple tradeoff solutions. The obtained 
tradeoff solutions are called non-dominated solutions that 
approximate unknown Pareto-optimal solutions (the ideal 
solutions in which no other solutions in the design space 
are better than them in terms of all the objectives). 

The discipline of aerodynamic shape optimization 
(ASO) has benefitted from the increasing use of multi-
objective EAs (MOEAs). Among MOEAs, multi-objective 
genetic algorithms (MOGAs) are gaining popularity in 
recent years (e.g., NSGA-II algorithm3). However, 
MOEAs require a considerable number of objective and 
constraint function evaluation calls. This is a drawback if 
applied to ASO, where computational fluid dynamics 
(CFD) is used as function evaluation (often 
computationally expensive). Alternatively, surrogate (or 
meta) models are used as approximate models that 
analytically map inputs to outputs based on a sample 
dataset given. All direct calls to the expensive evaluations 
are replaced with the surrogate models, hence called 
surrogate-based optimization (SBO).4 To improve the 
accuracy of the surrogate models, they often need to be 
updated with additional sample datasets given by infilling 
criteria in a sequential process. 

The use of surrogate models is nothing new in the field 
of engineering design optimization and exploration, 
especially ASO. Palar et al. pointed out several key issues 
concerning the applications of SBO techniques in real-
world problems.5 Of several surrogate models, Kriging6 is 
arguably the most popular surrogate model relied in 
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Bayesian optimization approach.7 Kriging provides the 
function prediction along with its estimation error. Zuhal et 
al., for example, did the benchmarking multi-objective 
Bayesian global optimization for aerodynamic designs 
with ordinary Kriging as the surrogate model.8 One Kriging 
model, however, can only do mapping for one function. 
This is a pitfall in MOPs since K Kriging models must be 
constructed for K expensive objective functions. It gets 
worse when dealing with high number of design variables 
which translates to high number of hyperparameters to be 
optimized leading to longer model generation time. 

Artificial neural network (ANN), on the other hand, 
can do mapping between many design variables (input) and 
multiple functions (output) in a single model. ANN thus 
has a great potential to be a surrogate model for 
optimization problems that have multiple expensive 
functions (e.g., MOPs) and many design variables. 

In this paper, we develop an ANN-assisted NSGA-II 
(NN+GA) with application to several multi-objective 
ASO-TA problems. The objective is to investigate the 
efficacy of the proposed method in the field of aerospace 
systems that have low to moderate number of design 
variables. This paper describes a preliminary study before 
the proposed method is used in high dimensional problems. 
The performance metric used is hypervolume (HV) that 
measures both the convergence and the spread of the 
obtained non-dominated solutions. We also compare the 
results obtained using NN+GA and standard NSGA-II by 
tracing the history of HV values per iteration. 

The remainder of this paper is structured as follows: 
Section II explains the basic of ANN surrogate model. 
Section III elaborates the flow and the techniques used in 
the SBO procedure. Section IV details the multi-objective 
ASO-TA problems. Section V presents the results along 
with the discussions. Finally, conclusions and future works 
are summarized in Section VI. 

 
II. Artificial Neural Network 

ANN is an abstract computational model of the 
human brain (a highly complex, nonlinear, and parallel 
information-processing system). ANN analytically 
models the relationship between the input variables 𝒙𝒙 �
�𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥��� , where 𝑛𝑛  is the dimensionality of the 
design variables, and the output � � �𝑓𝑓�, 𝑓𝑓�, … , 𝑓𝑓��� , 
where 𝑚𝑚  is the number of expensive-to-evaluate 
functions to approximate in a single model. Unlike 
Kriging that interpolates data, ANN is a regression type 
model and thus has the potential to be inherently fault 
tolerant or capable of robust computation.9 

Artificial neuron is a building block of ANN that 
consists of an adder and an activation function. The 
former acts as a linear combiner that sums the input 
signals while the latter allows ANN to map nonlinear 
functions. An externally applied bias 𝑏𝑏� can be applied 
to the adder. A set of neuron makes up a layer. Each 
neuron is connected to other neurons via links 
characterized by weight values, as in Figure 1. 

 
Fig. 1: A mechanism of an artificial neuron  

 
The net of a neuron 𝑘𝑘 can be represented as follows: 

𝑛𝑛𝑛𝑛𝑛𝑛� � 𝑥𝑥�𝑤𝑤�� � 𝑥𝑥�𝑤𝑤�� � � � 𝑥𝑥�𝑤𝑤�� � 𝑏𝑏� 

                           𝑛𝑛𝑛𝑛𝑛𝑛� � � 𝑥𝑥�𝑤𝑤��
�

���
� 𝑏𝑏�                           ��� 

Then the neuron computes the output 𝑦𝑦�  as a certain 
function 𝑓𝑓 of 𝑛𝑛𝑛𝑛𝑛𝑛� value as follows: 

                                       𝑦𝑦� � 𝑓𝑓�𝑛𝑛𝑛𝑛𝑛𝑛��                               ��� 
The function 𝑓𝑓 is called the activation function. Some 
popular activation functions include logistic sigmoid, 
hyperbolic tangent, and rectified linear unit (ReLU). 

The regression model is constructed by learning a set 
of data samples consisting of input 𝒙𝒙 (design variables) 
and target output 𝒕𝒕 (in this case, CFD). A loss function 
is a measure of how good the model in terms of predicting 
the desired response. One type of loss function that works 
in regression tasks is mean squared error (MSE). MSE 
loss function is defined as follows: 

                              ��𝒘𝒘� � � ||𝒕𝒕𝒋𝒋 � 𝒚𝒚𝒋𝒋||�
�

���
                     ��� 

where 𝒚𝒚𝒋𝒋 is the predicted value vector, 𝒕𝒕𝒋𝒋 is the desired 
response vector, 𝐽𝐽 is the number of samples trained in 
one batch (batch size), and 𝒘𝒘  represents the weight 
values of the network. Equation (3) can also be divided 
by 𝐽𝐽 to obtain the mean value. 

The learning process is conducted by minimizing the 
loss function by updating the weight values sequentially. 
The weight adjustment is conducted by error back-
propagation technique10 with gradient descent method11. 
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III.  Surrogate Based Optimization using NN+GA 
An MOP includes more than one objective 𝒇𝒇 to be 

simultaneously optimized with respect to some constraints 
𝒈𝒈 and 𝒉𝒉, if any. The search space is done on the design 
space 𝒙𝒙. The formulation is generally written as follows. 

 
    Minimize 𝑓𝑓��𝒙𝒙�,      � � �, �, � , �� 

  subject to 𝑔𝑔��𝒙𝒙� � �,      � � �, �, � , �� 
           ℎ��𝒙𝒙� � �,      � � �, �, � , �� 
          𝑥𝑥���� � 𝑥𝑥� � 𝑥𝑥����, � � �, �, � , �� 

 
Maximization problem can be treated the same way as 
minimization problem by multiplying the objective 
function with ��. Many kinds of EAs have recently been 
introduced to solve MOPs. Deb wrote a good summary of 
most of the methods in his book.12 

Many EAs guarantee the findings of global optimum, 
but then again, they typically require numerous calls to 
function evaluation, which is not favorable when the 
function evaluation is expensive to evaluate. It thus drives 
the development of SBO method to reduce the number of 
evaluations which translates to low computational cost. 

 
III.A. General procedure of SBO 
1. Geometry parameterization is done as the first step. 

The geometry is characterized by a set of design 
variables that determine the shape of a design. 

2. Latin hypercube sampling (LHS)13 is done as the 
initial sampling in the design space. 𝑁𝑁 is chosen as 
the number of initial LHS points. If the geometry 
parameterization has any inexpensive constraints, 
the LHS is combined with a constraint handling 

technique to obtain geometrically feasible shapes. 
3. The objective 𝒇𝒇, constraint 𝒈𝒈 and 𝒉𝒉 are evaluated 

using true function evaluations (e.g., CFD, etc). 
4. The so-far obtained solutions are compiled in a 

database containing 𝒙𝒙  and expensive-to-evaluate 
functions from 𝒇𝒇, 𝒈𝒈, 𝒉𝒉 to approximate. 

5. ANN based surrogate model is constructed by 
training using design database. An approximate 
model 𝒇𝒇��𝒙𝒙�, 𝒈𝒈��𝒙𝒙�, 𝒉𝒉��𝒙𝒙�  that can do analytical 
evaluation is obtained. 

6. Multi-objective optimization is done using NSGA-II 
algorithm, coded in Python.14 Any call to expensive 
evaluation from 𝒇𝒇, 𝒈𝒈, 𝒉𝒉 is replaced using the model 
𝒇𝒇��𝒙𝒙�, 𝒈𝒈��𝒙𝒙�, 𝒉𝒉��𝒙𝒙�. At the end of NSGA-II procedure, 
a set of non-dominated solution 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  is obtained 
which correspond to 𝒇𝒇�𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃. 

7. K-means algorithm15 for clustering data is used as an 
infilling criterion to down-select K points from 
𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 to be used as the new design points. The 
clustering is done on the objective space. 

8. If the computational budget is still available, proceed 
to Step 9. If not available, proceed to Step 10. 

9. The new design points are prepared to be evaluated 
by the true evaluations. Step 3-8 are repeated. 

10. A set of solutions 𝒙𝒙𝒍𝒍𝒍𝒍𝒃𝒃𝒃𝒃𝒍𝒈𝒈𝒃𝒃𝒍𝒍 which correspond to the 
best 𝑁𝑁  non-dominated solutions from the design 
database are obtained. They are then sorted to find 
solutions that lie on the first non-dominated front to 
approximate the Pareto-optimal front (POF) 

 
Figure 2 illustrates the SBO procedures applied to 

the multi-objective ASO-TA problems.
 

 
Fig. 2: Surrogate-based optimization procedure applied to multi-objective ASO-TA problems 
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III.B. Neural network configuration 
This study uses a fully connected feedforward neural 

network with five layers consisting of an input layer, 
three hidden layers, and an output layer, shown in Fig. 3. 

 
Fig. 3: Fully connected feedforward neural network 

 
The design variables are fed into the input layer, 

while the expensive-to-evaluate functions are fed into the 
output layer. The three hidden layers play a vital role to 
map the input to output. It has been reported that three 
hidden layers of neural network are enough to map any 
highly non-linear function (e.g., Shen et. al.16). 

This study uses LeakyReLU activation function 
which is the extended version of ReLU activation 
function. The activation functions are embedded to every 
layer in the hidden layers. ReLU always outputs zero in 
the negative range leading to saturation (also called dying 
ReLU problem). LeakyReLU is preferable since it avoids 
this saturation which often happens in a dense network. 
Equations 4 and 5 explain how they work. 
                               𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑥𝑥� � ����0, 𝑥𝑥�                          ��� 
         𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑥𝑥� � ����0, 𝑥𝑥� � 0�0� ����0, 𝑥𝑥�   ��� 
 
III.C. Data treatment prior to training 

Firstly, the design variable 𝒙𝒙  and the objective 
functions 𝒇𝒇 are normalized between 0 � �. To do this, 
𝒙𝒙���  and 𝒙𝒙���  are used as the lower and upper 
boundaries for 𝒙𝒙 , while ����𝒇𝒇�  and ����𝒇𝒇�  of the 
current sample dataset are the lower and upper boundary 
for 𝒇𝒇. This process can speed up the training.17 

Secondly, Euclidean distances between samples in 
the design variable domain are calculated. If there are two 
samples that have a distance � 0�00�, one of them will 
be deleted. Lastly, the K-means algorithm is used on the 
𝒙𝒙  domain to cluster the samples into K clusters. The 
value of K is chosen using a method called gap statistics18. 
The samples are duplicated so that the number of samples 
allocated to each cluster is evenly distributed. In other 
words, sample points in a less dense cluster region are 
oversampled. Suppose 𝑁𝑁  is the largest number of 

training data that belongs to a cluster and 𝑛𝑛�  is the 
number of training data that belongs to 𝑙𝑙-cluster. Then, 
the sample points that belong to 𝑙𝑙-cluster are duplicated 
���𝑛𝑛��𝑁𝑁�𝑛𝑛��  times. The last two steps prevent the 
network from adding more weights to the crowded 
samples, leading to overfitting them. 

 
III.D. Training the neural network 

The design database is first divided into two sets: 
training set and validation set. The former is used to train 
the model while the latter is used to validate the model. 
This method is called cross-validation. In this study, the 
training and the validation set are chosen randomly from 
the design database with ratio 4:1. 

The neural network model is constructed by training 
it using the training set. The term ‘training’ refers to the 
process of sequentially updating the weight values of the 
network so that the model can match the training data.  

The training is done in two phases: feedforward and 
back propagation. In the feedforward phase, the training 
set is passed into the network. The network with initially 
random weight values predicts the output. In the back 
propagation phase, gradient descent is used to calculate 
the slope of the function and uses this value to update 
weight values using the Widrow-Hoff rule as follows, 

                               𝑤𝑤�,� �� 𝑤𝑤�,� � 𝜂𝜂 𝜕𝜕𝜕𝜕�𝒘𝒘�
𝜕𝜕𝑤𝑤�,�

                         ��� 

where 𝑤𝑤�,�  represents the weight value that connects 
neuron 𝐿𝐿 in a layer and neuron 𝑙𝑙 in the next layer, 𝜂𝜂 is 
the learning rate, and 𝜕𝜕�𝒘𝒘� is the cost function. Adam19, 
a gradient based optimizer, is used to do the gradient 
descent task, which is to find a set of weight values 𝒘𝒘 
that minimizes the cost function 𝜕𝜕�𝒘𝒘�. 

This study adopts a mini batch gradient descent 
method in which only a portion of the training set is used 
at a time to calculate the cost function. This portion is 
called a batch size which is set to 5% of the training set. 
The cost function calculation is done until all the training 
set has been used. The average cost function is then 
obtained, and the weight values are updated. 

The validation process only includes the feedforward 
phase, where the validation set is passed into the network 
to calculate the cost function. As the training progresses, 
the cost function with respect to the training set decreases, 
while the cost function with respect to the validation set 
eventually increases. This is the sign of overfitting. The 
training is stopped whenever this sign is observed. If not 
observed, the training progresses, indicating an epoch. 
The maximum epoch is set to 2000. 

宇宙航空研究開発機構特別資料　JAXA-SP-21-008118

This document is provided by JAXA.



 

IV. Transonic Airfoil Shape Optimization 
We aim to apply our proposed algorithm (NN+GA) 

introduced in Section III to several ASO-TA problems. 
The same problems are also solved using standard 
NSGA-II algorithm with different configurations. The 
obtained results are compared to investigate the efficacy 
of the NN+GA as well as to show its superiority over the 
standard NSGA-II in this real-world problem. 
 
IV.A. Airfoil parameterization 

We use two techniques to parameterize the airfoil: 
PARSEC20 and B-Spline, illustrated in Figure 4. All 
airfoils in this study have a sharp trailing edge. The nine 
design variables for the PARSEC airfoil are listed in 
Table 1. For the B-Spline airfoil, the 18 control points are 
selected from the coordinates of RAE2822 (the baseline) 
that are listed in Table 2. 

 

Figure 4. Airfoil parameterization 
 
Table 1: The boundaries of PARSEC variables 

No Variables Lower bound Upper bound 
1. 𝑟𝑟��  0.0065 0.0092 
2. 𝑋𝑋�� 0.3466 0.5198 
3. 𝑌𝑌�� 0.0503 0.0755 
4. 𝑌𝑌���� -0.5094 -0.3396 
5. 𝑋𝑋�� 0.2894 0.4342 
6. 𝑌𝑌�� -0.0707 -0.0471 
7. 𝑌𝑌���� 0.5655 0.8483 
8. 𝛼𝛼�� -0.1351 -0.0901 
9. 𝛽𝛽�� 0.1317 0.1975 

 

Table 2: The boundaries of B-Spline control points 
No X Vars. Lower bound Upper bound

1. 0.928864 𝑌𝑌� -0.009306 0.010694 
2. 0.853553 𝑌𝑌� -0.024314 0.015686 
3. 0.777785 𝑌𝑌� -0.032689 0.007310 
4. 0.668445 𝑌𝑌� -0.048139 -0.007814 
5. 0.549009 𝑌𝑌� -0.064642 -0.024642 
6. 0.426635 𝑌𝑌� -0.076979 -0.036979 
7. 0.308658 𝑌𝑌� -0.078459 -0.038459 
8. 0.202150 𝑌𝑌� -0.071694 -0.031694 
9. 0.071136 𝑌𝑌� -0.053169 -0.013169 

10. 0.071136 𝑌𝑌�� 0.012644 0.052644 
11. 0.202150 𝑌𝑌�� 0.031885 0.071885 
12. 0.308658 𝑌𝑌�� 0.039629 0.079629 
13. 0.426635 𝑌𝑌�� 0.042779 0.082779 
14. 0.549009 𝑌𝑌�� 0.040194 0.080194 
15. 0.668445 𝑌𝑌�� 0.030993 0.070993 
16. 0.777785 𝑌𝑌�� 0.017847 0.057847 
17. 0.853553 𝑌𝑌�� 0.065540 0.046554 
18. 0.928864 𝑌𝑌�� 0.037689 0.023769 

IV.B. Computational fluid dynamics 
We use CFD to evaluate the aerodynamic 

performance (i.e., Cd and Cl) of the transonic airfoil shape 
in a 2D inviscid flow which was solved by SU2 open-
source code.21 Using the inviscid Euler solver is not 
realistic to simulate real-world aerodynamics with  
viscosity and thermal conductivity. Nevertheless, it is 
cheap and allows us to perform numerous function 
evaluations in the present numerical experiments to 
compare the efficacy between optimization algorithms. 
 
IV.C. Problem definitions 

The complexity of a problem is influenced by the 
dimensionality, the governing physics, the presence of 
constraints, etc. We define the following three multi-
objective ASO-TA problems, aiming at presenting 
different complexities. Note that we transform the 
maximization of 𝐶𝐶� to the minimization of �𝐶𝐶�. 
 
ASO-TA1: (2 objectives, 0 constraint, 9 variables) 
minimize           ∶  𝐶𝐶� ��� � 𝐶𝐶� 
with respect to ∶  PARSEC variables in Table 1 
subject to          ∶ - 
@ 𝛼𝛼 � ��, � � 0.�� 
 
ASO-TA2: (2 objectives, 0 constraint, 9 variables) 
minimize           ∶  𝐶𝐶� ��� � 𝐶𝐶� 
with respect to ∶  PARSEC variables in Table 1 
subject to          ∶ - 
@ 𝛼𝛼 � ��, � � 0.80 
 
ASO-TA3: (2 objectives, 3 constraints, 18 variables) 
minimize           ∶  𝐶𝐶� ��� � 𝐶𝐶� 
with respect to ∶  � � SP���E control points in Table � 
subject to          ∶ 0.8 ∗ 𝐴𝐴�������� � 𝐴𝐴 � 0 
               𝑌𝑌� � 𝑌𝑌�� � 0 
               𝑌𝑌� � 𝑌𝑌�� � 0 
@ 𝛼𝛼 � ��, � � 0.�� 
 

The above problems are in an order of increasing 
complexity. All problems have two expensive objective 
functions. ASO-TA1 and ASO-TA2 have no constraint 
functions, but the latter has a slightly larger Mach number. 
This is done to present a more complex problem since the 
shock wave is expected to be more intense. ASO-TA3 has 
higher dimensionality with addition of three cheap 
constraints. The area constraint prevents the airfoil from 
going too slender compared to baseline, and the trailing 
edge constraints ensure geometrically feasible shapes. 

第 53 回流体力学講演会／第 39 回航空宇宙数値シミュレーション技術シンポジウム論文集 119

This document is provided by JAXA.



 

V. Results and Discussions 
In this section, we present the computational results. 

To ensure the computational accuracy, we first conduct 
grid convergence study (GCS). We then apply the NN+GA 
and NSGA-II to the three ASO-TA problems. Finally, we 
compare the results using the HV metric. 

 
V.A. Grid convergence study 

The CFD results are dependent on the grid resolution. 
Thus, we should conduct GCS to decide our mesh 
configuration so that our aerodynamic values of interest 
are grid independent. In this study, the grid independence 
is marked by the convergence of 𝐶𝐶� and 𝐶𝐶�. The GCS is 
done on the RAE2822 in a 2D inviscid flow condition with 
� � ��, � � ����. We used a standard C-grid topology 
and surveyed five types of grid resolution. The GCS results 
are shown in Table 3 and in Figure 5. 
 
Table 3: The results of grid convergence study 

Types Mesh size 𝑪𝑪𝒅𝒅 𝑪𝑪𝒍𝒍 
Extra coarse 3,344 0.0093040 0.8373201

Coarse 7,714 0.0080846 0.8470053
Medium 17,688 0.0076633 0.8488699

Fine 38,016 0.0075925 0.8504628
Extra fine 89,496 0.0075496 0.8505103

 

Fig. 5: Grid convergence for 𝐶𝐶� and 𝐶𝐶� 
 

We can observe that 𝐶𝐶�  and 𝐶𝐶�  have converged 
between fine and extra fine grids. The CFD on the fine 
grid took about 1 minute and 10 seconds while it took 
about 2 minutes 47 seconds for the extra fine grid. The 
CFD was done on an Intel(R) Xeon(R) CPU E5-1630 v4 
3.70 GHz with 4 cores. Based on this result, we decide to 
use the fine grid. Figure 6 shows an example of the 
structured grid used in this study. All the meshes are 
created using Pointwise, a commercial meshing software. 

  
Fig. 6: An example of the fine grid used in this study. 

V.B. Optimization algorithms 
We use NN+GA algorithm and three different 

configurations of NSGA-II algorithm to approach the 
ASO-TA problems. The same exact initial samples found 
by LHS are used as the initial population for all algorithms 
so that we can do a fair comparison. The number of initial 
samples is 100. 

In the NN+GA, an initial surrogate model is obtained 
by training the network based on these 100 initial samples. 
The training parameters are listed in Table 4. NSGA-II 
with the configuration listed in Table 5 is used with the NN 
model replacing all the expensive function evaluations (𝐶𝐶� 
and 𝐶𝐶�). After obtaining 100 optimized samples predicted 
by the NN+GA, K-means algorithm is used to cluster these 
samples into 𝑁𝑁��������� clusters. The samples closest to the 
centroids are chosen as the next sample points (infilling 
points). For ASO-TA1 and ASO-TA2, 20 infilling points 
are added 5 times, while for ASO-TA3, 10 infilling points 
are added 30 times. Thus, if the optimization is done until 
𝑛𝑛��  generation, the number of CFD evaluations using 
NN+GA can be written as follows: 

 
                 𝑁𝑁��� � ��� � 𝑁𝑁��������� ∗ �𝑛𝑛��� � ��             ��� 
 
Table 4: The training parameters 

 ASO-TA1 ASO-TA2 ASO-TA3
𝑵𝑵𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 

(input layer) 9 9 18 

𝑵𝑵𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 
(hidden layer) 128 128 2048 

𝑵𝑵𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 
(output layer) 2 2 2 

Learning rate 0.001 
𝑵𝑵𝒏𝒏𝒑𝒑𝒏𝒏𝒐𝒐𝒐𝒐 2000 

Train ratio 80% of the current database
Batch size 5% of the training set 

 
Table 5: Parameter values for NSGA-II inside the NN+GA 

Population size 100 
Max number of 

generations 250 

Crossover 𝜂𝜂� � ��, ���� � ��� 
Mutation 𝜂𝜂� � ��, ���� � ����� 

 
In the second algorithm, NSGA-II is used with a 

population size of 100 that participates in the genetic 
process, producing the next 100 sample points to be 
evaluated. Due to the budget limitation, the NSGA-II100pop 
is run until 10th generation (1000 CFD evaluations). 

In the third and fourth algorithm, NSGA-II with fewer 
population size is used. Now, only a population size of 20 
participates in the genetic process, producing the next 20 
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sample points to be evaluated. Since we have to start with 
the same 100 initial LHS samples, the K-means algorithm 
is used to down-select 20 out of 100 initial LHS samples. 
The K-means algorithm is run on the design space 𝒙𝒙 for 
the third algorithm, and on the objective space 𝒇𝒇 for the 
fourth algorithm. The fourth algorithm is the least efficient, 
because the 100 LHS samples must be evaluated first. 
Since only 20 samples are chosen, the remaining 80 
samples are redundant. For ASO-TA3 only, the population 
size is set to 10. Thus, if the optimization is done until 𝑛𝑛�� 
generation, the number of CFD evaluations using NSGA-
II can be written as follows: 

 
                 𝑁𝑁��� � ��� � 𝑁𝑁��� ∗ �𝑛𝑛��� � ��             ��� 

 
The parameters for the second, third, and fourth 

algorithm are listed in Table 6. 
 
Table 6: Parameter values for the three NSGA-II algorithms 

 The second 
algorithm 

The third 
algorithm 

The fourth 
algorithm 

Pop size 
for prob 1 & 2 100 20 20 

Pop size 
for prob 3 100 10 10 

Max 𝒏𝒏𝒈𝒈𝒈𝒈𝒏𝒏 
for prob 1 & 2 10 11 11 

Max 𝒏𝒏𝒈𝒈𝒈𝒈𝒏𝒏 
for prob 3 10 31 31 

Crossover 𝜂𝜂� � �� 
𝑟𝑟��� � ��� 

𝜂𝜂� � �� 
𝑟𝑟��� � ��� 

𝜂𝜂� � �� 
𝑟𝑟��� � ��� 

Mutation 𝜂𝜂� � �� 
𝑟𝑟 � ����� 

𝜂𝜂� � �� 
𝑟𝑟��� � ���� 
𝑟𝑟� � ���� 

𝜂𝜂� � �� 
𝑟𝑟��� � ���� 
𝑟𝑟� � ���� 

Initial pop LHS samples 
K-Means 

on 𝒙𝒙 
K-Means 

on 𝒇𝒇 

 
The HV indicator is used as the performance metric 

for each optimization. For NN+GA, the HV of current 
population is calculated every time the infilling points are 
evaluated, while for NSGA-II, it is calculated every time 
the new generation is evaluated. To calculate HV, two 
reference points, ����� �����  and ����� ���� , in the 
objective space are used to normalize both 𝐶𝐶�  and 𝐶𝐶� . 
Due to the stochastic nature of the algorithms, each 
optimization problem is solved three times with different 
initial populations (LHS was done three times). Thus, the 
HV value is averaged among three optimization runs. 
 
V.C. Results of ASO-TA1 

Figure 7 shows the average HV history for all 
algorithms performance in ASO-TA1. It basically shows 
how the HV value progresses as the number of true 

evaluations increases. Since the HV values represent the 
proximity towards the POF and its spread, the higher the 
HV value is, the better. 

It can be observed from Figure 7, that the proposed 
method (NN+GA) can achieve higher HV value with 
significantly fewer number of CFD evaluations compared 
to the standard NSGA-II without surrogate model. We 
defined our budget for ASO-TA1 to be: 3 x 200 = 600 
evaluations for NN+GA; 3 x 1000 = 3000 evaluations for 
the second algorithm; and 3 x 300 = 900 evaluations for 
the third and fourth algorithm. 

With only 600 CFD evaluations, the NN+GA 
achieves an HV value of around 0.675 while NSGA-II 
(2nd algo) can only achieve 0.650 with 3000 CFD 
evaluations. We can say that the proposed method is 
superior to the rest of algorithms in solving ASO-TA1. 

 
Fig. 7: Average HV history for ASO-TA1 

 
The NSGA-II 3rd and 4th algorithms are used to 

eliminate the doubt that claims the superiority of NN+GA 
is because of lower 𝑁𝑁��������� = 20 compared to 𝑁𝑁��� = 
100. Even with 𝑁𝑁��� = 20, as in the third and fourth 
algorithm, there is no significant improvement that can 
make them compete with NN+GA. 

These results are visualized in Figure 8 that shows 
the plot of all solutions found by NN+GA and NSGA-II 
(2nd algo) and the attainment surface of their non-
dominated sets. The plot of the initial population and the 
non-dominated set indicates the complexity of the 
problem. From Figure 8(a), we can observe that most of 
the initial population lie on the low 𝐶𝐶� region (𝐶𝐶� = 0.4 
- 0.6). The only task of the optimizer is then to expand the 
search to cover the high 𝐶𝐶� region. 

The CFD results of the optimized solutions are 
presented in Figure 13-15. Note that the low-drag airfoils 
have less intense shock, shown in the pressure contours, 
which in turn reduces the wave drag. 
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  (a) All solutions        (b) Attainment surface 
Fig. 8: Plot in the objective space for ASO-TA1 solved by NN+GA and NSGA-II (2nd algo) 

(a) All solutions               (b) Attainment surface 
Fig. 9: Plot in the objective space for ASO-TA2 solved by NN+GA and NSGA-II (2nd algo) 

 
(a) All solutions               (b) Attainment surface 

Fig 10: Plot in the objective space for ASO-TA3 solved by NN+GA and NSGA-II (2nd algo) 
 
 

V.D. Results of ASO-TA2 
Both ASO-TA1 and ASO-TA2 have all identical 

conditions, except for the slightly higher Mach number in 
the latter. This slight difference results in a higher 
complexity of the latter compared to the former. This is  

indicated in the plot of the initial population and the non-
dominated set (Figure 9(a)). In ASO-TA2, the optimizer’s 
task now is to find both extreme regions. A slightly higher 
Mach number induces a more intense shock wave, as 
found from a comparison between Figure 13 and 14. This 
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shock wave induces higher wave drag, increasing the drag 
coefficient 𝐶𝐶�. This is why the initial population in ASO-
TA2 does not lie in the low 𝐶𝐶� region as in ASO-TA1. 

Figure 11, again, shows the average HV history for 
all algorithms’ performance in solving ASO-TA2. In the 
same way, it shows the superiority of NN+GA over the 
standard NSGA-II in solving ASO-TA2. With only 3 x 
200 = 600 CFD evaluations, the NN+GA achieves an HV 
value of around 0.535, while the NSGA-II (2nd algo) can 
only achieve 0.505 with 3 x 1000 = 3000 CFD evaluations. 
The third and fourth algorithms give a slight 
improvement for NSGA-II, with the same 3 x 300 = 900 
evaluations, but are still inferior to the NN+GA. 

 
Fig. 11: Average HV history for ASO-TA2 

 
V.E. Results of ASO-TA3 

Unlike the PARSEC variables that ensure the 
smoothness of the airfoil, the B-Spline control points 
offer much more flexibility that allows the creation of 
rough surfaces. The existence of constraints also makes 
some obtained solutions infeasible. Thus, ASO-TA3 is 
the most complex problem among the three problems. It 
can be observed in Figure 10(a) that the initial population 
is located far away from the PO and some solutions are 
infeasible. It is expected to be difficult for the optimizer 
to find the POF. That is why we defined the budget to be: 
3 x 400 = 1200 CFD evaluations for NN+GA, the third 
and fourth algorithm and 3 x 1000 = 3000 CFD 
evaluations for NSGA-II (2nd algo). Both algorithms can 
find better solutions than the baseline. 

Figure 12 corroborates the superiority of NN+GA 
over standard NSGA-II even in a more complex problem. 
We can observe from Figure 13-15, that the shock waves 
seem to be not realistic and too intense. It is because of 
the use of Euler solver, which in its nature, is not realistic 
and this nature is exploited by the optimizers that have no 
information about the physics.   

 
Fig. 12: Average HV history for ASO-TA3 

 
 
 
 
 
 
 
 
 
 

Fig. 13: Pressure contours of two extreme solutions 
found by NN+GA and NSGA-II on ASO-TA1 

 
 

 
 
 
 
 
 
 
 

Fig. 14: Pressure contours of two extreme solutions 
found by NN+GA and NSGA-II on ASO-TA2 

 
 

 
 
 

 
 
 
 
 

Fig. 15: Pressure contours of two extreme solutions on 
ASO-TA3 and the baseline with their geometries 
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Although this study focuses on the comparison 
between optimization algorithms (not on the CFD results) 
and only uses Euler solver, it is sufficient to say that the 
use of ANN makes the GA more efficient. This finding, 
however, must be further justified in high-fidelity CFD. 
 

VI. Conclusion and Future Works 
In this study, we proposed a state-of-the-art surrogate-

based optimization methodology called NN+GA that uses 
an artificial neural network-assisted genetic algorithm. The 
NN+GA and the standard NSGA-II were applied to three 
multi-objective aerodynamic shape optimization of 
transonic airfoil problems with different complexities. The 
NN+GA was shown to converge more quickly towards the 
POF compared to the standard NSGA-II in all problems. 

Although we only used problems with low (<10) and 
moderate (10-50) dimensionality, the NN+GA algorithm 
has the potential to be used in multi-objective optimization 
problems that have many design variables. We are 
planning to use the proposed method in a problem with 
much higher dimensionality (>100) and high-fidelity CFD. 
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