

第2回直交格子 CFD ワークショップ

【等間隔/不等間隔型直交格子法による熱流束の評価】

宮崎紗弥香 喜多琉歩 阿部薫平 佐々木大輔 (金沢工業大学) 高橋俊 山田剛治 (東海大学)

	計算手法	± (KIT)
	計算手法	[Building-Cube Method]
支配方程式	2D Navier-Stokes方程式	【格子生成の流れ】
離散化手法	セル中心有限体積法	▶ 計算領域を立方体 ▶ Cube内を等間隔直交格子(Cell)に分割
非粘性流束評価	HLLEW	 ▶ 流体計算はCube毎に独立して実行 ▶ Cube境界では隣接Cubeと物理情報交換
高次精度化	3次精度MUSCL法	
粘性流束評価	2次精度中心差分法	
時間積分法	LUSGS陰解法	
埋め込み境界法	ゴーストセル法	

	計算:	手法(東海大)
	計算手法	2D/M0.2/Re300円柱周りにおけるLANS3Dとの比較
支配方程式	3D Navier-Stokes方程式	2.0 1.8 5, 1.6 2.0 1.8 5, 1.6 2.0 1.8 5, 1.6 1.8 5, 1.6 1.8 5, 1.6 1.8 5, 1.6 1.8 5, 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
離散化手法	セル中心有限体積法	Territoria and a second
非粘性流束評価 (過去研究)	Skew-sym&Roe switching scheme	$1.0 \qquad \qquad$
非粘性流束評価	HLLC	Takahashi, S., et al., J. Applied Mathematics 252478 2014
高次精度化	3次精度MUSCL	3D/M0.3/Re300における球周りのLANS3Dとの比較
粘性流束評価	2次精度中心差分	
時間積分法	3次精度TVD Runge-Kutta	T
埋め込み境界法	ゴーストセル法	(a) BFC (b) MOSDOROA (c) MOSDOROB (c) MOSDOROB Mizuno, Y., et al., Mathematical Problems in Eng. 438086 2015

		解林	斤課題に:	いて.		
图3:円柱	熱流束に	対する評価				
郓析条件】						
M∞	Re∞	U∞[m/s]	T∞[K]	P∞[Pa]	D[mm]	Tw[K]
	10 ³			98.822	10	
3	104	882.42	215	988.22	10	215
	10 ⁵			9882.2	10	
7 (Tokai)	10 ³	882.42	60	98.822	10	60

【格子情報:東海大】

	Coarse	Medium	Fine
Total number of cell	40,000	160,000	640,000
Min cell size	1.25×10-2D	6.25x10 ⁻³ D	3.125x10 ⁻³ D
IJK max	100×2×200	200x2x400	400x2x800

まとめ
等間隔直交格子及び不等間隔直交格子を用いた解析を行い,以下の 事がわかった.
▶表面圧力分布においてはどのRe帯においてもどの手法でも十分に一致 する >よどみ流線分布においてはM3ではKIT,東海大共に構造格子とおおむ ね一致する >M7での不等間隔直交と構造格子では淀み流線に違いが生じる
▶熱流束分布においてはおおむね分布傾向を捉える事はできているが, Re10 ⁵ では最大値を捉える事ができていない

