HIMICO の基準軌道と飛行安全系の検討

○今村俊介 (JAXA),田口秀之 (JAXA),土屋武司 (東大), 森田直人 (東大),佐藤哲也 (早大)

1. はじめに

現在,複数の大学と JAXA の合同チームにて極超 音速統合制御実験(HIMICO)が検討され、また観測 ロケットへの搭載提案が行われている¹⁾. HIMICOの 実験構想図を図1に示す. HIMICOは S-520 ロケッ トに搭載され打ち上げられ、デスピン後のロケット から分離される.分離後,自由落下的に降下し,高動 圧域に達したら操舵による引き起こしを行い、搭載 された極超音速エンジンの試験に必要な速度(マッ ハ4以上),動圧条件(動圧一定)を確保すべく姿勢 軌道制御を行っていく. エンジン試験後は海上に落 着する予定である. HIMICO の軌道は S-520 の打上げ 条件(S-520 質量,打上げ仰角)によって支配されて おり、姿勢軌道プロファイルのベースラインとなる 基準軌道を設定するためには HIMICO だけでなく, S-520 側のパラメータも含めた検討が必要となる. ま た HIMICO が過去の S-520 ペイロードと最も異なる 点は「翼を持ち,エンジンによる推力も発生させる飛 翔体であること」であり,搭載を確定させるためには, 予め定められた海上落下範囲への確実な落着を示す 必要がある.本文では、上記で述べた HIMICO の基 準軌道および飛行安全に関する検討経過を紹介する.

2. 基準軌道

2-1. 前提条件の見直し

HIMICO の基準軌道検討はこれまでも実施されて いるが²⁾, S-520 の打上げ仰角が実際には設定できな いほど小さな (水平に近い) 値になっていたり,最新 の HIMICO の諸元 (質量,形状)を反映していなか ったりと前提条件の見直しが必要であった. S-520 側 と調整を重ね,基準軌道検討に必要な S-520 側パラ メータを表 1 の通り設定した.また HIMICO 側の設 計進捗を取り込む形で HIMICO 側パラメータを表 2 の通りまとめた.また,HIMICO の形状および空力解 析結果を図 2, 3 に示す.

表1 基準軌道検討用 S-520 側パラメータ

項目	値		
打上げ質量	2150~2650kg*		
打上げ仰角(経路角)	73, 77, 80deg*		
空力係数,基準面積	観測ロケットプロ提供値		
推力,比推力	同上		
HIMICO 分離時刻	打上げ後 240sec		
蒸下分散 範囲模擬	打上げ Az角, El角それぞ		
	れ±3deg		

*:この範囲の中で基準軌道が検討される

図1 HIMICO 飛行実験構想

2-2. 基準軌道の検討

(1) 検討方法

S-520の打上げ質量・仰角を表1の範囲で振り,それぞれのケースで HIMICO の姿勢軌道解析を行い, 下記条件を満たすケースを抽出する.

- ① エンジン試験を動圧一定条件で実施できること
- ② エンジン試験時間が0秒以上(エンジン試験開始時のマッハ数が4以上)
- ③ 海上落着時に内之浦局アンテナの仰角が 0deg 以 上であること(内之浦局からの可視性を残すため)
- ④ ロケット単体の海上落下分散範囲(保安円)が半径 100km を超えないこと(S520の保安円実績の最大が 126km であり, HIMICOの飛行含めて過去実績内に収めるため)

上記条件で得られた飛行ケース(HIMICO 試験実 行可能解)の中から適切なケースを選択していく.

(2) 軌道ステージの区分

軌道解析を行う前提として, S-520 および HIMICO の軌道を図4に示す5つのステージに分割する.

(3) 運動方程式

本解析で利用している運動方程式は以下の通り. 運動方程式の各記号の意味を表3に示す.

$$\dot{h} = v \sin \gamma$$

$$\dot{v} = \frac{T \cos \alpha - D}{m} - \frac{\mu}{r^2} \sin \gamma$$

$$\dot{\gamma} = \frac{L + T \sin \alpha}{mv} \cos \sigma - \frac{1}{v} \left(\frac{\mu}{r^2} - \frac{v^2}{r} \right) \cos \gamma$$

$$\dot{\psi} = \frac{L + T \sin \alpha}{mv} \frac{\sin \sigma}{\cos \gamma} - \frac{v \cos \gamma \tan \varphi \cos \psi}{r}$$

$$\dot{\theta} = \frac{V \cos \gamma \cos \psi}{r \cos \varphi}$$

$$\dot{\phi} = \frac{V \cos \gamma \sin \psi}{r}$$

$$\dot{m} = \frac{T}{Ispg_0}$$

$$r = h + R_0$$
(1)

(4) 飛行制御方法

ステージ 0 の初期条件である S-520 ランチャー静 止状態から各ステージを表 4 に示す条件で軌道伝播 し, S-520・HIMICO の軌道を模擬する.

表2 基準軌道検討用 HIMICO 側パラメータ

項目	値
質量	55kg
推力,比推力	エンジン試験中に推力 35N, 比推 力 1062ccc を 5 秒間
空力係数	HIMICO 2B 形状を LSI 解析*

*: 圧縮側に修正ニュートン流法を, 膨張側に Prandtl
 Meyer 膨張流理論を適用しパネル毎の圧力を得る³⁾

図2HIMICO-2B形状グリッドモデル

図 3 HIMICO-2B 形状 LSI 解析結果(M5)

記号	意味	記号	意味
r	地心高度[km]	М	飛行マッハ数[-]
h	海面高度[km]	q	飛行動圧[Pa]
v	速度[m/s]	L	揚力[N]
γ	経路角[deg]	D	抗力[N]
Ψ	方位角[deg]	Т	S520 推力[N]
φ	緯度[deg]	Isp	S520 比推力[sec]
θ	経度[kg]	n_{lf}	垂直方向荷重倍数[G]
α	迎角[deg]	n_{ga}	機軸方向荷重倍数[G]
δ	エレボン舵角[deg]	g_{0}	標準重力加速度
σ	バンク角[deg]	R_{θ}	地球半径
т	機体質量[kg]	μ	地球重力定数

(5) 解析ケース

以上の問題設定より,本文の軌道解析は S-520 打 上げ質量・S-520 打上げ仰角(経路角)・HIMICO 再突入引起し角の3パラメータに支配されることと なる.これらの値を決めた後,軌道伝播を行うが,そ の途中で表4に示した動圧一定や縦トリム等の条件 を満たす迎角・エレボン舵角の組合せが得られなか った場合はそのケースを棄却する.

(6) 解析結果

S-520 打上げ質量は 2150~2650kg を 50kg 刻み, S-520 打上げ仰角は 73, 77, 80deg, HIMICO 再突入引 起し角は-10~-40deg を 5deg 刻みとしてパラメトリ ックスタディを行い, (1)で示した条件を満たす結果 のみを抽出した. S-520 打上げ仰角毎に整理した結果 を表 5~7 に示す. なお表におけるハッチング箇所は その色が濃いほど性能が良い (例えばエンジン試験 時間が長く確保出来る)を示している. 考察は以下の 通り.

- ① 打上げ質量が軽く、かつ、打上げ仰角が小さいほ どダウンレンジが増加し、内之浦局から不可視と なるためケースが棄却されている(各表上側).逆 に質量が重く、仰角が大きいほど内之浦局仰角が 大きく取れる(各表下側).
- ② 打上げ仰角が小さいほど放物運動が水平に近くなり、低高度(高動圧域)に到達する前に引起しを完了することができ、エンジン試験中の最大動圧を低下させ、試験時間も延ばすことが出来る.
- ③ ①と②は内之浦局からの可視性とエンジン試験 品質とのトレードオフの関係になっている. 今後

も HIMICO の設計進捗に合わせて、本文のようなパ ラメトリックスタディを継続実施しながら最適ケー スを選択していく必要がある.

表 5 S-520 打上げ仰角 73deg

打上げ 質量 [kg]	再突入 引起し角 [deg]	試験開始時 迎角 [deg]	試験時間 [sec]	試験開始時 マッハ数 [-]	エンジン試験中 最大動圧 [kPa]	エンジン試験中 最大垂直荷重倍数 [G]	終端飛 行距離 [km]	内之浦 局EI [deg]
2450	-35	16.4	7.2	4.7	112.8	16.9	374	0.8
2450	-30	14.9	5.3	4.5	102.2	13.2	373	0.9
2450	-25	13.1	3.2	4.3	91.0	9.4	372	1.0
2450	-20	11.3	0.9	4.1	79.9	6.9	370	1.2
2500	-35	17.2	4.7	4.5	102.2	14.9	345	1.2
2500	-30	15.6	3.0	4.3	93.4	11.9	345	1.3
2500	-25	13.8	1.4	4.1	83.6	9.2	344	1.5
2550	-35	18.1	3.0	4.4	92.5	14.4	320	1.7
2550	-30	16.2	1.8	4.2	85.4	11.5	320	1.8
2600	-30	16.9	0.5	4.1	78.0	11.1	298	2.2
2650	-30	17.4	0.1	4.0	74.5	10.9	290	2.4

表 6 S-520 打上げ仰角 77deg

表 7 S-520 打上げ仰角 80deg

打上げ 質量 [kg]	再突入 引起し角 [deg]	試験開始時 迎角 [deg]	試験時間 [sec]	試験開始時 マッハ数 [-]	エンジン試験中 最大動圧 [kPa]	エンジン試験中 最大垂直荷重倍数 [G]	終端飛 行距離 [km]	内之浦 局EI [deg]
2250	-20	5.6	2.7	4.1	112.7	4.4	349	1.1
2300	-30	9.9	4.5	4.4	140.2	13.4	323	1.2
2300	-25	8.2	2.6	4.2	121.7	7.2	321	1.4
2350	-40	14.5	5.7	4.6	167.9	19.4	299	1.3
2350	-35	13.5	4.3	4.4	147.8	15.6	299	1.4
2350	-30	10.4	2.4	4.2	129.3	12.3	297	1.6
2350	-25	8.8	0.6	4.1	112.6	7.3	296	1.8
2400	-40	15.2	4.0	4.5	152.4	18.7	277	1.7
2400	-35	14.2	2.3	4.3	135.0	15.2	275	1.9
2400	-30	10.8	0.9	4.1	119.5	11.2	275	2.1
2450	-40	15.8	2.3	4.3	138.6	18.0	256	2.2
2450	-35	12.3	1.1	4.2	124.9	15.2	256	2.3
2500	-40	14.1	1.3	4.2	128.4	17.6	239	2.6
2500	-35	12.9	0.2	4.0	115.3	11.6	238	2.8
2550	-40	14.8	0.6	4.1	118.1	15.8	223	3.1

表 4	谷スアー	ンの飛行制御力沿	7

ステージ	0	1	2	3	4
ステージ名	S520飛行	HIMICO再突入	HIMICO遷移	HIMICO エンジン試験	HIMICO降下
終了条件	打上げ後240sec	経路角変化量>0deg, 経路角=-10~-40 ^{*1}	ステージ1終了 +6sec	マッハ4到達	高度0m以下
初期質量	打上げ質量	HIMICO質量 (55kg)	HIMICO質量 (55kg)	HIMICO質量 (55kg)	HIMICO質量 (55kg)
迎角	0deg	縦トリム維持角度	動圧一定条件成立 値まで線形変化	動圧維持角度	$0 deg^{*4}$
エレボン舵角	N/A	30deg*2	縦トリム維持角度	縦トリム維持角度	縦トリム維持角度
バンク角	N/A	180deg*3	0degまで線形変化	0deg	0deg

*1:再突入引起し角(どの程度引き起こすか)

*2:可能な限り高迎角(高揚力)で飛行し、高高度で引き起こしを完了させるため(高動圧領域に入らせないため)

*3:方向静安定のため

*4:ダウンレンジ増加を防ぐ(内之浦局からの可視性を確保する)姿勢を想定

2-3. 暫定基準軌道

暫定基準軌道として,内之浦局からの可視性を優 先し,かつ,打上げ仰角の中間値を選択するとして, S-520 打上げ質量 2550kg,打上げ仰角 77deg,HIMICO 再突入引起し角-35deg のケースを選択している.同 ケースで得られた軌道履歴を図 5,6に示す.

3. 飛行安全系の検討

3-1. 飛行安全要求

HIMICO を S-520 に搭載するためには、JAXA/ISAS の安全審査を通過する必要がある.前述した通り、そ の中で HIMICO の「飛翔経路異常による警戒区域の 逸脱」は最も懸念されているハザード(異常事象)と なっている.本懸念を払拭するための対応として JAXA が制定した「無人機システム安全技術基準

(JERG-5-001B)」⁴⁾を遵守する方向で検討を進めている.同基準では無人機の飛翔実験に対する各種飛行 安全要求が規定されており,特に「機体廃棄機能」については下記要求となっている.

3.13.3 機体廃棄機能 4)

- ① 飛行安全措置のための基本として、本機能を必ず 有すること.
- ②本機能は、正常な飛行に必要な系に任意の一つの 故障又は一つの人的過誤が発生した場合でも正 常に機能すること.(例えば、正常な飛行に必要な 系と独立な1系統の機体廃棄機能を有する).

3-2. 機体廃棄機能システム構成

同基準を遵守するためには,飛行安全系が1 故障 許容設計(電源系含めて)となっている必要があり, 現在,図7に示す「正常な飛行に必要な系」「飛行停 止装置」による2系統での機体廃棄機能を検討して いる.本システムでは,統合制御装置と飛行停止装置 が独立して,空力操舵へ電力および機体廃棄のため の操舵信号を出力する設計となっている(アクチュ エータへの電力・制御信号出力という観点では1故 障許容).また,空力操舵3舵(左エレボン,右エレ ボン,ラダー)の内,1舵に操舵信号が入れば機体廃 棄(錐もみ状態)を図れるため,アクチュエータとし ては2故障許容の設計となっている.

図5 暫定基準軌道履歴(1of2)

図 7 HIMICO 飛行安全システム

本システムを用いた飛行安全処置の手順は以下の 通りである.

①「正常な飛行に必要な系」による飛行安全処置

GPS および統合制御装置 (ICU) により機体廃棄許 容空域通過を検知した場合,各舵 (左右エレボン,ラ ダーの計 3 系) に姿勢安定を失わせるための操舵コ マンド(基本的には,左右エレボンには極性逆とした 最大舵角,ラダーには最大舵角)を送信し,錐もみ落 下させ,機体廃棄許容区域内に落下させる.

② 「飛行停止装置」による飛行安全処置

飛行停止装置は内部の ICU モニタにて ICU のハー トビート信号を常時受信している. ICU の故障や ICU が異常 (GPS ロックオフ等)を検知した場合, ハート ビートが停止する. ICU ハートビートの停止を飛行 停止装置が検知した場合, ①と同じ制御を行い, 機体 廃棄許容区域内に落下させる. また更なる安全対策 として, 飛行停止装置内にタイマーを設け, ある設定 時間を経過した場合, ①と同じ制御を行い, 機体廃棄 許容区域内に落下させる. なお, ICU モニタとタイマ ーによる機体廃棄動作は OR 接続とする.

以上は HIMICO が自律的に実施する飛行安全処置 である.上記に平行して,内之浦局にて検知する HIMICO オンボード GPS データおよびレーダトラン スポンダ情報により飛行位置監視を行い,要すれば 飛行停止コマンドを HIMICO 側に送信する.

3-3. 落下分散解析

ロケットの飛行誤差を最大限含みつつ,HIMICOが 最長飛行(L/D 最大となる迎角を維持してしまった) および最長クロスレンジ飛行(方位角を±90deg 変更 してしまい、かつ L/D 最大となる迎角を維持してし まった)を行った場合のモンテカルロ解析(1万ケー ス)を実施し,前述した機体廃棄機能の有効性を検証 した.モンテカルロ解析と合わせて機体廃棄空域(こ の範囲に到達したら機体廃棄機能稼働)および機体 廃棄区域(この範囲に落着しなければならない)の設 定も行い(図 8),図9の落下分散解析結果を得た. 図 9 は内之浦局を原点とし,各ケースの落着点を示 したものである.図 9 の通り,機体廃棄空域を半径 100km,機体廃棄区域を半径126km(S-520 実績最大) と取ることで安全に HIMICO を機体廃棄区域内に落 着させることが出来ることを示した.

4. まとめ

本文では、HIMICO の基準軌道と飛行安全系の検 討状況を紹介した.現在の軌道では、内之浦局のみで 追尾出来る可能性が高いが、バックアップとして船 上局からのデータも併せて取得する検討を行ってい る.船は機体廃棄区域外に配置する前提とし、必要な 追尾システムについて今後回線計算を含め検討予定 である.引き続き、HIMICOの試験成功・飛行安全確 保のための検討を進めて行く.

参考文献

- Hideyuki Taguchi, et al.: Mach 5 Flight Experiment Plan of High-Mach Integrated Control Experimental Aircraft (HIMICO), 33rd International Symposium on Space Technology and Science, 2022.
- 2) 佐藤哲也,他:極超音速統合制御実験機 (HIMICO)
 2 号機の飛行実験提案,観測ロケットシンポジウム 2019 講演集,2019
- ANDERSON John David : Hypersonic and high temperature gas dynamics, AIAA, 2000
- 4) JAXA: 無人機システム安全技術基準, JERG-5-001B, 2017

図9機体廃棄機能動作時の HIMICO 落下分散解析