

日米共同・太陽フレアX線 集光撮像分光観測ロケット実験 FOXSI-4

2024年春打ち上げ予定 JAXA 宇宙科学研究所 2020年度小規模計画に採択

成影 典之 (国立天文台)

渡辺伸, 坂尾太郎 (宇宙航空研究開発機構) 高橋 忠幸, 長澤 俊作, 南 喬博 (東京大学 カブリ IPMU) 三石 郁之, 瀧川 歩, 作田 皓基, 安福 千貴 (名古屋大学) 川手 朋子 (核融合科学研究所), 石川 真之介 (立教大学) Lindsay Glesener (University of Minnesota) FOXSI-4 チーム

科学目的

新しい観測技術の実証

【1】世界初となる太陽フレアのX線集光撮像分光観測を成功させる。

新しい科学成果の創出

- 【2-1】<mark>観測から</mark>、太陽フレア領域全体の<mark>温度構造を精確に評価</mark>する。
- 【2-2】<mark>観測から</mark>、太陽フレア領域全体にわたって<mark>加速された電子(非熱的成分)を探索</mark>する。
- 【2-3】<mark>観測から</mark>、太陽フレアで<mark>解放されたエネルギーや加速された電子の伝搬を追跡</mark>する。
- 【2-4】<mark>観測と数値計算の両輪で</mark>、太陽フレアにおける<mark>エネルギー解放・変換過程を精査</mark>する。

新しい研究手法の普及

[3] 取得した観測データや解析用ソフトを公開し、この<mark>新しい観測手法を普及</mark>させる。

FOXSI-4 の科学意義

太陽X線観測の必要性

density

10⁸

 10^{4}

Temperature of

objects at which

this radiation is the

wavelength emitted

temperature

10¹²

-272 °C

100 K

-173 °C

10¹⁵

10,000 K

9,727 °C

 10^{16}

10,000,000 K

~10,000,000 °C

10²⁰

太陽X線観測の種類(画像が取得できる観測)

)	FOXSI

		ダイナ ミック レンジ	空間 分解能	時間 分解能	エネル ギー 分解能	観測データ
すだ	線帯域】 れコリ ーター	×	Δ	0	0	12.0-15.0 keV
X線 S	線帯域】 ミラーと)カメラ	0	0	0	×	広帯域フィルターでの撮像 (「ようこう」 軟X線望遠鏡)
狙う~	べき観測	✓ダイナミッ空間・時間	○ クレンジをそ ・エネルギー	○ 確保した上で 一の情報を同	○ ○]時に得る!!	20s - 120s 10 ⁷ 10 ⁸

観測に対する要求

- 高温および非熱的プラズマを検出可能なこと
- プラズマの物理量を空間・時間分解して取得できること

観測方法

- ・X線用ミラーと高速度カメラを用いた 光子計測型・集光撮像分光観測
 - **X線帯域**: 高温および非熱的プラズマを観測するため
 - 連続光成分:急激な温度変化に対する素早い反応
 - <u>輝線</u>: プラズマに対する豊富な情報を含む

 - *高速度カメラ*:時間分解能を確保するため
 - *分光 (エネルギー分解)*:物理量を取得するため

ダイナミックレンジを確保した上で、 空間・時間・エネルギーの情報を同時に得る!!

太陽 X 線を直接集光する観測実証ロケット実験

- NASA の観測ロケットを使用 (Low Cost Access to Space の枠組み)
 - 高度100km以上で、<mark>5分間強の観測</mark>が可能
 - 全長 2m 強の観測装置が搭載可能
 - ・<mark>1秒角以下の姿勢制御</mark>が可能
 - ・<mark>再利用</mark>が可能
- FOXSIは、過去3度飛翔に成功

FOXSI-1 2012年

FOXSI-2 2014年

FOXSI-3 2018年

FOXSI-1: 2012年11月2日 により

太陽硬X線集光撮像分光観測が実現(世界初)

新しい観測装置(FOXSI)

Credit: Chandra telescope

RHESSI 4-15 keV

ダイナミックレンジの確保に成功!

FOXSI-2: 2014年12月11日 の成果は 」Nature Astronomy に掲載(Ishikawa et al. 2017)

FOXSI-3: 2018年9月7日

FOXSI-2 からのアップデート:

- CMOS 検出器を搭載し、軟X線の集光撮像 分光観測を実施した
- 望遠鏡にコリメーターまたはブロッカーを 設置し、迷光を除去した
- 3回目のフライト:約6分間の観測
 - 活動領域、X線輝点、静穏領域、 極域フィラメント、コロナホールなどを 含む、太陽全面の軟X線撮像分光観測 (世界初)に成功。

- 問題点:装置の問題点はなし
 - ただし、太陽活動が低く、硬X線のデータを 十分に取得することができなかった。 10

親プロジェクトに参加する意義と価値 [2.4] FOXSI シリーズの発展

) -				
	FOXSI-1 (2012)	FOXSI-2 (2014)	FOXSI-3 (2018)	FOXSI-4 (2024)
観測対象	静穏領域	活動領域 静穏領域	活動領域 静穏領域	太陽フレア
観測波長	硬X線 () 5~30 keV		軟X線 0.5~10 keV	
望遠鏡	OVERALL GRADE (mark p	Glesener, Lindsay nanel overall score with "X")	high resolution optics x 5 10 shells x 2 modules	
検出器	Excellent G 'X': Overall grade.		Fair F/P Poor	CdTe (6.7 arcsec) x 5 [for hard X-rays] + CMOS (1.1 arcsec) x 2 [for soft X-rays]

FOXSI-4 計画は、2020年7月、<mark>最高評価(Excellent の評価)で NASA に採択</mark> 2021年9月、<mark>JAXA 宇宙科学研究所 2020年度小規模計画に採択</mark>

FOXSI の装置の概要

太陽フレアに対するX線集光撮像分光観測

<mark>「高精度X線集光ミラー」</mark>と<mark>「X線用高速度カメラ」</mark>を組み合わせた望遠鏡で 実施する

FOXSI-3 (2018年打ち上げ) で取得した軟X線データ 毎秒 250 枚の高速連続撮像 (4 ミリ秒露光)

·					
大きな	本研究の	調査		装置	
科学目標	科学目的	求める物理量	観測量	デザインパラメータ	要求値
磁気再結合が引き起こす磁:	C クラス以上の太陽フレフ	ア後期に対する調	査	視野	> 360" × 360"
	【1】世界初となる太陽フレアのX線集光撮像分光観測を成功させる。 【2-1】観測から、太陽フレア領域全体の温度構造を精確に評価する。 【2-2】観測から、太陽フレア領域全体にわたって加速された電子(非熱的成分)を探っる。 【2-3】観測から、太陽フレア領域全体にわたっながを探った。 【2-3】観測から、太陽フレアで解放された電子の伝搬を担かで解放されたエネルギーと助する。 【2-4】観測と数値計算の両輪で、太陽フレアにおけるエネルギーの伝搬を対けるエネルギーのあまりで、一解が変換過程を精をする。 【3】取得した観測データや解析用ソフトを公開し、させる。	磁気再結合システムによって 生じる構造に 対する温度・密度情報の空間 分布と時間発展	空時解軟帯スペールを対している。	エネルギー帯	0.5 - 10 keV
				空間分解能	〈3 秒角 FWHM
				時間サンプリング	<1 秒
				エネルギー 分解能	< 0.2 keV FWHM
				ダイナミック レンジ	> 10³
気エネル ギーの解		加速電子が作 る非熱的電子 密度フラックス の空間分布と 時間発展	空時解硬帯メペー間・分た線のスト	エネルギー帯	10 - 30 keV
放とそれに				空間分解能	〈5 秒角 FWHM
よって生じ				時間サンプリング	〈1 秒
るエネルギ 一変換機 構の追究				エネルギー 分解能	< 1 keV FWHM
				ダイナミック レンジ	> 10 ³

空間分解能 時間分解能 エネルギー分解能 高いダイナミックレンジ

を同時に達成する 【世界初】の 太陽フレアX線観測

FOXSI-4のキー技術(太陽フレア観測に向けた改良)

FOXSI

高精度電気鋳造X線ミラーとコリメータ

高精度電気鋳造X線ミラー (超小型衛星・ロケット実験にもマッチするサイズ)

空間分解能の目標 (cf. FOXSI-3)

- <10" HPD (€ 25" HPD)
- <4" FWHM (← 5" FWHM)

コリメーター

Double reflected photons [H] Single reflected photons [P]

目標 (cf. FOXSI-3)

- アスペクト比 1:270 (← 1:190)
- ・ 穴の直径 0.5 mm (← 1 mm)

分角レベルの Off-axis photon (迷光)を 除去するための高いアスペクト比をもつ 多孔構造 → 金属3Dプリンターで造形

Flare here

軟X線カメラ

裏面照射型CMOS検出器と評価試験

完全空乏化した 25um 厚の感受層を持つ 裏面照射型検出器

検出器の評価用に開発したミラー(反射)を 使った減光システム。これにより高次光の影響を受けない単色の光での評価が行える。

Photon counting capability of CMOS (with ⁵⁵Fe source)

完全空乏化により、FOXSI-3で用いた検出器 よりもシャープなスペクトルが得られている。 また、感受層が厚くなったことにより、<mark>感度</mark> の向上と、X線によるダメージに対する耐性 が向上した。

FOXSI-3で用いたCMOSセンサーの response matrix のモデリング

軟X線カメラ用ボード (Linux, FPGA込) と 。SpW Routerボード

軟X線カメラ用ボード(SPMU-002)

₹ XILINX。SOM (Kria K26) を用いたカメラボード

- SpW
- - SSD
 - 10 G イーサネット
- USB 3.0/2.0
- PCI expressイーサネット
 - LVDS, LVCMOS

各カメラの入出力(コマンド、テレメなど)は、 SpW 経由で行うが、それをまとめあげるためのボード。

SpW Routerボード

汎用性にも留意し開発中

国立天文台「すばる」望遠鏡用に開発中の CMOS検出器用カメラボードにも水平展開

硬X線カメラ

』FOXSI-4 CdTe DSD 試作機の製作と評価試験

55**Fe**

FOXSI-4向けのCdTe半導体両面ストリップ検出器の試作機(2021年10月)の写真と得られたスペクトル。 (スペクトルは両面とも1stripのイベントのみに適用可能な簡易なエネルギー再構成手法による。)

2021年11月に行ったSPring-8での性能検証試験の様子。上記のFOXSI-4向けのCdTe半導体両面ストリップ検出器の試作機を使用。ペンシルビームで、10 μ mごとのスキャンを複数のエネルギー(7 keV, 16 keV, 25 keV, 35 keV)で実施。位置分解能の性能検証のためのデータ解析を実施中。

 \rightarrow サブストリップレベル(30um = 3 秒角)の位置決定精度を達成できる見込み

打ち上げオペレーション (ポーカーフラット観測ロケット打ち上げ場)

2024年春

Prediction of solar flares

Kusano+ 2020

Nishizuka+

実施体制

- ☀ 太陽物理学
- ・ 高エネルギー宇宙物理学
- 꾀 地球惑星磁気圏プラズマ物理学

数値計算の実施メンバー

- 高棹 真介 (大阪大学大学院 理学研究科)
- ◎ 岡 光夫 (カリフォルニア大学バークレー校)
- 🬟 金子 岳史 (名古屋大学 宇宙地球環境研究所)

なお、このメンバーが指導する大学院生も本計画に 参加しており、将来のスペースミッションを担う若 手の育成にも役立っている。

観測ロケット実験 FOXSI の先

「ロケット実験 FOXSI-1, 2 (2012年, 2014年)

> ロケット実験 FOXSI-3 (2018年)

ロケット実験 FOXSI-4 (2024年春)

世界初の太陽フレア X線集光撮像分光観測

「PhoENiX」衛星 (2030年代はじめ)

FOXSI-3 flight on 7 September 2018 (動画)の成功を受けて

いよいよ太陽フレアを観測するロケット実験 FOXSI-4

集光摄像分光観測

太陽フレア(磁気再結合)におけるエネルギーの解放と変換

- ▶ 新しい太陽フレアX線観測の実現と、それを用いたサイエンスのリード
- ▶ 既存コミュニティー3分野(太陽物理学、高エネルギー宇宙物理学、 地球惑星磁気圏プラズマ物理学)の連携
- データの公開とアーカイブ
- ▶ 広く活用できる数値計算モデルの構築
- ▶ 様々な小規模実験に活用できる標準ハードウェアの構築
- > 人材育成
- ➢ 公募型小型計画PhoENiXへの発展

2024年の打ち上げにご期待下さい!!

小規模計画 ISAS/JAXA

日米共同・太陽フレアX線集光撮像分光観測ロケット実験 FOXSI-4, PI: 成影 (FY2021~2025)

- 基盤研究(A) 新規採択, PI: 成影 (FY2022~2024)
- 国際共同研究加速基金(国際共同研究強化(B)) 21KK0052, PI: 成影 (FY2021~2024)
- 基盤研究(A) 21H04486, PI: 渡辺 (FY2021~2024) ほか (上記は現在実施中のもののみ記載: 採択順)

科研費