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ABSTRACT

This paper describes a theoretical study on the stability of supersonic streamwise vortices. The spatial as
well as temporal stability calculations are made for a single streamwise vortex in a Mach 2.45 free stream.
The basic ow data necessary for the stability analysis such as the velocity and vorticity distributions
are obtained by conducting numerical simulation of the ow past the so—called alternating wedge vortex
generator. By describing the results for the unstable modes the spatial stability characteristics are shown
to be in good agreement with those of temporal one. It is emphasized that the streamwise vortex is
demonstrated to be much more unstable and powerful in enhancing supersonic mixing, compared with the
so—called mixing layer. Importantly this comparison is made possible by newly de ning the convective
Mach number for the streamwise vortex.
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(a) CNR11-R15

(b) CNR11-R15, X Y cross section (Z =0)

(c) CNR11-R22, X Y cross section (Z =0)

(d) CNR11-R22, Y Z cross section

X = -0.25 mm X = 4.75 mm X = 7.25 mm X = 14.75 mm X = 22.25 mm

Fig. 1 Direct numerical simulation results for the generation process of supersonic streamwise vortex behind the alternating
wedge vortex generators CNR11-R15 and CNR11-R22 at M = 2.45: (a) and (b) density contour plots for the case of
CNR11-R15; (c) and (d) axial vorticity of isosurface (positive: red, negative: blue) for the case of CNR11-R22.

(a) (b) (c)

Fig. 2 Comparison of simulation results with measurements6) for the streamwise mass— ux, for the case of CNR11-R22 at
M = 2.45: (a) X = 10 mm, (b) X = 22 mm, and (c) X = 35 mm.

(A) (B) (C)

Fig. 3 Simulation results for Y —distributions of (A) axial velocity, (B) axial vorticity at X = 22.25 mm and for (C)
streamwise variation of circulation in Y Z cross section, for the case of CNR11-R22 at M = 2.45.
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(G) Conversion of i into
(s)
i

(H) Spatial growth rate, i (I) Convective Mach number, Mc

(D) Spatial growth rate, i (E) Spatial growth rate, i (F) Axial wave number r vs. frequency

(A) Temporal growth rate, i (B) Temporal growth rate, i (C) Axial wave number vs. frequency r

Fig. 4 Linear instability characteristics of compressible streamwise vortices at M = 2.45: CNR11-R22, q = 0.27, =
0.35, (A) i vs. r, (B) i vs. , (C) r vs. ; (D) i vs. , (E) i vs. r, (F) vs. r, (G) comparison between

spatial growth rate i and
(s)
i converted from i. WCNR, q = 0.1, = 0.2, (H) i vs. , for various azimuthal wave

numbers; and (I) normalized maximum growth rate vs. Mc for q = 0, 0.1, and 0.27.
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