P-077

PhoENiX衛星計画に向けた 高精度Wolterミラー保持機構の検討

Study of mount structures for soft X-ray precision Wolter mirrors towards PhoENiX

坂尾太郎*1, 松山智至2,3, 山内和人3, 三宅明4, 野村伊玖磨5,

原玲丞5, 竹中久貴5, 成影典之6

* *e-mail: sakao@solar.isas.jaxa.jp* 1: JAXA宇宙研、2: 名大工、3: 阪大工、4: JTEC、5: トヤマ、6: 国立天文台

Introduction

- High precision X-ray imagery of the solar corona (esp. solar flares) with Wolter optics
 - ~1"-level spatial resolution
 - Low scattering especially in ~10"-20" off-axis positions [where the electron acceleration site could be located above the very bright post-flare X-ray loop]
- Development of Precision Wolter mirrors:
 - Goodrich abandoned fabrication of Wolter mirrors
 - Lightweight & large aperture Wolter mirrors:
 * Mono-crystalline Si mirrors towards Lynx
 * Si pore optics towards Athena
 * Electro-formed mirrors for solar application
 - * Electro-formed mirrors for solar applications
 - * Direct polishing of segmented glass substrates

2006-12-13 02:02:18

PhoENiX/SXIS Mirror Assembly Concept

Mirror Module SXIS Telescope Structure Detector Module

Mirror Unit

Mirror area: W38 x D90 for both P & H Mirror substrate: W80 x D220 x H30

Total 9 mirror units

Features of SXIS Mirror Mount

- 6-DOF constraint with 3 mounting points (3 lateral, 3 rotational DOFs).
- Mounting flexures:
 - Axial stiffness (restraining directions) should be high enough against launch load.
 - * Static load: 30 G in any direction, Eigenfrequency: ≥200 Hz; for ~3 kg component, launch with Epsilon

[Margin of safety > 0.5 for static load; c.f., M.S. > 2.0 for repetitive load]

- Stiffness for non-restraining directions should be low enough not to deform the mirror.
 - * Against possible mis-alignment in assembling the mirror mount.
- Suppress gravitational deformation during optical tests on ground.
- Feasibility of fabrication and adjustment.

Mirror Mounting Concept

Flexure Rod Constrain shift and rotation along the rod axis.

- Support at the two ends along the optics axis direction.
- This introduces large shift in the meridional focus position (≥100 mm) if the mirror is placed horizontally, but saves space in the "width" direction.
- X-ray optics test to be performed with the mirror set vertically. (Suppress meridional focus shift down to ~1 mm while the focus shift allowance is 68.4 mm for 1.5" HPD.)

Flexure Design - Axial Stiffness

Flexure material: Super Invar (baseline)

Z-axis (optics axis) direction to be supported by a single flexure structure (k_{Az}) .

→ Determine

(1) cross sectional area size, A

(2) axial stiffness, k_n

to meet the static load (30 G) and eigenfreq. (\geq 200 Hz) requirements.

$$A = \frac{m\alpha(MS+1)}{\sigma_y} \qquad k_n = \frac{E \times L}{L}$$

σ_y: 0.2% proof stress*E*: Young's modulus*L*: Flexure length

Flexure structure with

 $A = 1.8 \text{ mm}^2 (k_n = 2.4 \times 10^4 \text{ N/mm})$ [for L (flexure length) = 10 mm] can comfortably withstand the launch load and at the same time meet the eigenfreq. requrement. (Also OK against buckling.)

ばね定数[N/mm]	固有振動数[Hz]					
	1次モード	2次モード	3次モード	4次モード	5次モード	6次モード
1800	188	267	295	318	440	577
2000) 198	281	310	334	464	607
2100	203	288	318	342	475	621
* 2200	208	295	325	350	486	635
(振動方向)	Z軸方向	X軸方向	Y軸方向	Z軸まわり	Y軸まわり	X軸まわり

January 2022

22nd Space Science Symposium

青丸....固定点

Flexure Design Investigation

(Flexure width = 10 mm being considered)

Effect of Mis-Alignment in the Mirror Mount Assembly

- Assume (maybe) worst-possible amount of mis-alignment both in lateral and rotational directions. Lateral shift: ±0.1 mm Rotation: ±0.1 deg.
- Also assume reaction-force and reaction-torque are to be exerted on the mirror substrate in such a way as to maximize the mirror bend.
- Type-C flexure design can well suppress the focus shift even in such a case.

Mirror Mount Design for Point-A (Most complicated structure among the 3 mount points)

• Monolithic structure with electric discharge machining.

- Suppress lateral shift/rotational error in flexure assembly.
- Height/tilt adjustment to be performed by shims in btwn. the mirror mount and the base plate.
- Again verified the structure meets static load, eigenfrequency, buckling, and mirror deformation req's.
- Weight saving by machining to be performed.

Max. Mises stress (204 MPa; along Z axis) below 0.2% proof stress (308 MPa) for the static launch load, ensuring the M.S.

22nd Space Science Symposium

Summary

- Mount design for PhoENiX/SXIS mirror(s) in progress.
- Developed conceptual design for the flexure structure of the mount rods.
 - Meets static launch load and minimum eigenfrequency requirements for a component on Epsilon launcher.
- Designed the mount rod structure for the 3-axes-restraining mount point (Point-A).
 - Most complicated rod structure among the 3 mount points.
 - Fabrication procedure taken into account. (Monolithic fab. with electric discharge machining.
 - Again confirmed the structre meets Epsilon requirements.
- Assembly procedure being developed at the same time.
- Future prospects:
 - Verification of the adhesive for attaching the mirror pads together with the attachment procedure.
 - Design remaining two mount rods.
 - Weight saving of the mirror unit (esp. the base plate).
 - Verification of the mount structure.

22nd Space Science Symposium