

# **Background and Objectives**

### About scFLOW

#### What is scFLOW?

- A part of commercial CFD package "Cradle CFD" developed by Hexagon
  - User-friendly GUI
  - A comprehensive package
    - Pre-processor: Polyhedral mesh generator
    - Solver: Unstructured polyhedral mesh thermo-fluid solver
      - Incompressible to hypersonic flows
      - · Multi-phase flows
      - Granular flows
    - Post-processor: Visualization
  - Multiphysics
    - · Co-simulation among MSC Nastran, Marc, Adams, Actran.



2 | hexagonmi.com

## **Background and Objectives**

About scFLOW

- What is scFLOW?
  - scFLOW has recently been ported to the Fugaku A64FX system and become available on Fugaku. •





# **Background and Objectives**

### Validation Works and Objectives

- · Validation of scFLOW on aerospace applications
  - AIAA 2020-3029
    - · Hemisphere-cylinder (HC) and ONERA M6 (OM6) wing in NASA's turbulence model resource (TMR).
    - · Good agreement with those obtained by NASA's government codes (FUN3D, CFL3D, USM3D).
  - AIAA 2022-3522
    - · Validate scFLOW on models used at 4th AIAA CFD High Lift Prediction Workshop (HLPW4).
    - · Demonstrate the parallel efficiency on Fugaku.

#### · Objectives of this work

- Further verification study for low speed & high AoA flows of CRM-HL with scFLOW
  - Steady RANS
    - · Iterative convergence characteristics of aerodynamic coefficient
    - Comparison with experimental measurement
    - · Research on the aerodynamic hysteresis around the stall angle
  - Transient analysis
    - · Shows preliminary results
- 4 | hexagonmi.com



MEXAGON



0.024

### **Numerical Methods**

#### Numerical Mesh

- Mesh generation by scFLOW
  - For the **boundary layer elements**, the recommended values of Level-C in Mesh Generation Guidelines on the workshop website were used for the initial thickness and boundary layer growth rate.
  - For this work, Octants are simply refined around the walls, especially at the edges.

#### Example of Octants specification





### **Numerical Methods**

#### Numerical Procedure

- · Discretization method
  - · Cell-centered finite volume method, unstructured polyhedral, density-based solver
- Inviscid flux
  - Roe flux
- Reconstruction
  - · Linearity-preserving U-MUSCL (Nishikawa 2020)
    - · Recovers the accuracy of U-MUSCL even when the mesh is in bad condition
    - κ for the meanflow equations
      - Polyhedral Mesh : κ=0.5
      - ANSA 103 : κ=0.0(more stable but less accurate)
- Viscous flux
  - · Alpha damping scheme (Nishikawa 2010)
    - Evaluates the gradient at a CV-face by using high-frequency damping term with the parameter alpha in addition to the arithmetic mean of elemental gradients
    - Stable and accurate even for skew mesh (Jalali et al. 2014)

```
7 | hexagonmi.com
```



#### Numerical Procedure

- · Calculation method of gradients
  - Polyhedral Mesh : Weighted least squares
- ANSA 103
   : Green-Gauss(more stable but less accurate)
- Non-linear solver in a steady-state analysis
  - Implicit defect correction solver with the residual Jacobian derived exactly from a lower-order discretization with a local pseudo-time step
- Turbulence model
  - Steady : SA-neg
  - Transient : SST-SAS
- · Initial field & calculated AoA
  - Steady
    - Uniform Flow : 2.78, 7.05, 11.29, 17.05, 19.57, 20.55, 21.47°
    - AoA Increasing :  $17.05 \rightarrow 19.57 \rightarrow 20.55 \rightarrow 21.47^\circ$
    - AoA Decreasing : 11.29 ← 17.05 ← 19.57 ← 20.55 ← 21.47°
  - Transient
  - Steady results : 7.05, 17.05, 19.57, 21.47°
- 8 | hexagonmi.com

🛃 HEXAGON



#### **Convergence Histories**

# Calculation histories of aerodynamic coefficients, CL, CD, and CM, Polyhedral Mesh Evaluate the averaged flow-field in the last 2,500 cycles



**Numerical Results** 

### AoA Sweep

- · Comparison of the aerodynamic coefficients, CL, CD, and CM
  - It has been said that around the stall angle is difficult with the steady RANS, but these results are relatively good.



### AoA Sweep

- Comparison of the pressure coefficients, Cp, at AoA=21.47°
- In terms of the pressure distribution on the wing surface, Polyhedral Mesh gives better results.



**Numerical Results** 

### AoA Sweep

- Comparison of the oil flow visualization at AoA=21.47  $^\circ$ 
  - Polyhedral Mesh predicts well the flow separation around the wing root and attached flow around the section Wing F.





Wina F

#### Aerodynamic Hysteresis

• Comparison of the aerodynamic coefficients, CL, CD, and CM, among 3 sets of initial conditions: a uniform flow (Uniform Flow), the result at a lower AoA (AoA Increasing), and the result at a higher AoA (AoA Decreasing)



### **Numerical Results**

Aerodynamic Hysteresis

• Comparison of the aerodynamic coefficients, CL, CD, and CM, among 3 sets of initial conditions: a uniform flow (Uniform Flow), the result at a lower AoA (AoA Increasing), and the result at a higher AoA (AoA Decreasing)



### Aerodynamic Hysteresis

- Comparison of oil flow and iso-surfaces of the vorticity, AoA=19.57°
- · Separation behind the nacelle or at the wing root occurs depend on the initial field



**Numerical Results** 

**Transient Analysis** 

- · Comparison of the aerodynamic coefficients, CL, CD, and CM
  - Preliminary calculation of transient analysis can not improve the steady RANS results.



#### **Transient Analysis**



# **Conclusions & Future Work**

### Conclusions & Future work

#### Conclusions

- · Verification study of CRM-HL with a polyhedral finite-volume turbulent-flow solver, scFLOW was performed.
  - Steady results were successfully obtained.
  - The coefficients CL, CD, and CM are relatively good agreement with those of experiment. Especially, prediction at a higher AoA
    after the stall is difficult. However, Polyhedral Mesh got better results in terms of surface pressure by capturing the separation
    accurately.
  - Aerodynamic hysteresis is observed: especially for AoA=19.55°, steady-state results are different among the three cases of angle-increase, decrease, and uniform flow start.
  - · Preliminary calculation of transient analysis could not improve the steady RANS results.

#### Future work

Study the **transient analysis** and **adaptive mesh refinement approach** to capture the separation phenomena more accurately and improve the resulting aerodynamic coefficient prediction.

| 18 | hexagonmi.com |
|----|---------------|
|----|---------------|



Slat/Wing G