June 29, 2022 Eighth Aerodynamics Prediction Challenge (APC-8) 1C10

Aerodynamics prediction of CRM-HL using RANS by TAS code

TASによるCRM-HLのRANS定常空力解析

OFuruya Ryutaro (Ryoyu Systems Co., Ltd.) Murayama Mitsuhiro (JAXA) Ito Yasushi (JAXA) Tanaka Kentaro (Ryoyu Systems Co., Ltd.)

Cases calculated

2

Test Cases

- Case1: C_{Lmax} study (warm & cold starts)
- Case3: Flap deflection study
- Case4: Turbulence model study in 2D simulation (SA-noft2-R(C_{rot}=1) & SA)

	Case 1	Case 3	Case 4
Geometry	3D CRM-HL		2D CRM-HL
Flap deflection (inboard/outboard)	40°/37°	43°/40°	_
ΑοΑ	(2.78°) 7.05° (11.29°) 17.05° 19.57° 21.47°	7.05° 17.05°	16.00°
Grid	240-JAXA- unstructured ^{*1}	2.2-Pointwise- Unstr-PrismTet- V2_43/40*1	Family 1 ^{*2}
Grid Level	C-level ^{*3}	D-level ^{*3}	L1~7*4

*1 Grid downloaded from HLPW-4 website

 $^{\ast 2}$ Grid provided by NASA TMR

*3 A-level (coarsest) to D-level (finest)

*4 L1 (coarsest) to L7 (finest)

Computational condition & Numerical methods

Computational conditions

- Description Case1, 3
 - Mach = 0.2, Re = 5.49×10^6 (C_{ref} = 275.8 in), T_{ref} = 289.4K
- Case4
 - Mach = 0.2, Re = $5.00 \times 10^6 (C_{ref} = 1)$, $T_{ref} = 272.1 K$

Numerical methods

Code	TAS	
Governing Equations	RANS (Reynolds Averaged Navier-Stokes) Eq.	
Discretization	Cell-vertex finite volume method	
Convection term	HLLEW (Harten-Lax-vanLeer-Einfeldt-Wada)	
Reconstruction method	2 nd order Unstructured MUSCL	
Time integration	LU-SGS implicit	
Turbulence model	SA-noft2-R (C _{rot} =1) (fully turbulent) SA (fully turbulent) for Case 4	

Computational Resources

 JAXA Supercomputer System generation 3 (JSS3) was used for these computations.

Aerodynamic coefficients (Case 1)

- CFD results with warm and cold starts are compared with experiment.
- Compared with experiment, CFD tends to predict lower C_L, and higher C_D and C_M at high angles of attack.
- CFD with warm and cold starts provides different results at high angles of attack. CFD with warm starts predicts
 - Slightly higher C_L , lower C_D and higher C_M before the stall occurs.
 - Significantly higher C_M after the stall occurs.
- CFD with warm starts seems to provide better results before the stall occurs. Flow fields are compared in the following slides.

Spanwise sectional $C_l \& C_m$ distributions at $\alpha = 21.47^{\circ}$ 8

9

Aerodynamic coefficients (Case 3)

- CFD results only with Warm starts for the flap 40°/37° & 43°/40° configs are compared with experiment.
- For the flap 43°/40° config, compared with experiment, CFD predicts
 - Lower C_L & higher C_M at $\alpha = 7.05$ & 17.05°.
 - Comparable C_D at $\alpha = 7.05^{\circ}$ & higher C_D at $\alpha = 17.05^{\circ}$
- Compared with CFD result of the flap 40°/37° config, that of the flap 43°/40° config provides
 - Lower C_L and C_D at $\alpha = 7.05^\circ$, while higher C_L and C_D at $\alpha = 17.05^\circ$.
 - Higher C_M at α = 7.05°, but comparable C_M at α = 17.05°.

Aerodynamic coefficients (Case 3)

- Compared with experiment, TAS code predicts lower ΔC_L of the 43°/40° config at α = 7.05°. This trend is similar to results of other CFD codes participating in HLPW-4.
- Aerodynamic coefficients predicted by TAS code at $\alpha = 17.05^{\circ}$ are closer to the experimental result than those at $\alpha = 7.05^{\circ}$.

Aerodynamic coefficients (Case 4)

(1/N)1/2

- Similar $C_l \otimes C_m$ at all grid levels
- 10~17 cts. larger $C_d \bigotimes^m C_{dp}$ at all grid levels
- C_{df} converged at the finest grid
- Compared to TAS with SA, TAS with SA-noft2-R predicts
 - 0.018~0.021 lower $C_l \otimes$ 0.0032~0.0036 higher C_m in all grid levels

 - Šimilar $C_d \otimes C_{dp}$ at all grid levels About 1 cts. lower C_{df} at all grid levels

Summary

51

- C_{L,max} study
 - CFD results were obtained with warm and cold starts.
 - Compared with experiment, CFD results with both warm and cold starts predicted lower C_L , and higher C_D and C_M .
 - Compared with CFD with cold starts, CFD with warm starts provided results closer to the experiment before the stall occurred.

Flap deflection study

- ^D For the flap 43°/40° config, compared with experiment, CFD predicts
 - Lower C_L & higher C_M at $\alpha = 7.05$ & 17.05°.
 - Comparable C_D at $\alpha = 7.05^{\circ}$ & higher C_D at $\alpha = 17.05^{\circ}$
- Compared with experiment, TAS code predicted lower ΔC_L of the 43°/40° config at α = 7.05°. This trend was similar to results of other CFD codes participating in HLPW-4.

Turbulence model study in 2D simulation

- SA in TAS code were verified by comparison with FUN3D results.
- Compared to SA in TAS code, SA-noft2-R(C_{rot}=1) shows
 - Lower C_l , C_{df} and higher C_m
 - Similar C_d and C_{dp}