Eighth Aerodynamics Prediction Challenge (APC-8) 2022/06/29

Aerodynamic Prediction of CRM-HL Using Hierarchical Cartesian Grid and Immersed Boundary Method

Funada Masaya, Imamura Taro (The University of Tokyo) Sugaya Keisuke (JAXA)

Agenda

- Background
- Objective
- Numerical methods
- Case4 : 2D CRM-HL
- Case1 : 3D CRM-HL
- Conclusions

Background 1

- UTCart (The University of Tokyo Cartesian grid based automatic flow solver)
 - Unstructured hierarchical Cartesian grid
 - Automatic and robust grid generation
 - The Immersed Boundary Method with a wall function*1

菅谷, and 今村, 流力ANSS2021

Background 2

- Until now, the upper limit of the number of grids in UTCart has been about 200 million
 - Some variables exceed the integer4 limit
 - Visualization software do not support integer8
- Extend the upper limit of number of grids
 - The type of some variables has been changed to integer8
 - Visualization data is output separately

→Flow simulations with about 400 million grids can now be performed

Objective

63

- To evaluate the prediction accuracy of Immersed Boundary Method with a wall function for low-speed simulations of highlift device configuration
 - The effects of grid width are investigated
 - Steady computations
 - Case4 : 2D CRM-HL
 - Case1 : 3D CRM-HL
 - Up to 400 million grids

Immersed Boundary Method

- Flow variables are extrapolated from Image Point (IP)
- Wall function is used to determine the wall shear stress
- Assuming that tangential velocity is linear between the wall and IP

Numerical methods

Governing Equation	RANS		
Turbulence Model	SA-noft2		
Inviscid Flux	SLAU+3 rd -order MUSCL		
Viscous Flux	2 nd -order central difference		
Time Integration	MFGS (Local Time Stepping)		
Wall Boundary Condition	IB+SA wall model		
Distance between IP and wall	$3\Delta x$		
Initial Condition	Free stream		

7

Case4 2D CRM-HL

Computational grid

CFL number is 20 in all grids

•

0.080

0.075

0.070

0.065

-0.35

-0.36

ర[≋] −0.37 −0.38

-0.39

0.0005

0.0005

0.0010 0.0015 0.0020 0.0025

 $1/\sqrt{N}$

0.0010

0.0015

 $1/\sqrt{N}$

Aerodynamic coefficients

- A fair agreement between UTCart and FUN3D*1 at finest grid
- In the third finest grid, UTCart results differ from FUN3D results
 - IP is in the buffer layer $(y_{IP}^+ : 10 \sim 30)$
- If IP is not in the buffer layer, the prediction accuracy is reasonable

1) https://turbmodels.larc.nasa.gov/

 C_m

0.0020

 C_d

• A fair agreement with FUN3D results, except for #5-grid

Case1 3D CRM-HL

Computational grid

- Unstructured hierarchical Cartesian grid
- Three grids are used
- IP is in the log layer

	100M-grid	200M-grid	400M-grid	
Number of Grids	103,640,578	194,862,769	409,626,109	
Reference Grid width (Δx_{ref})	9.537 × 10 ⁻⁴ C _{MAC}	6.936 × 10 ⁻⁴ C _{MAC}	$4.768 \times 10^{-4} C_{MAC}$	
CFL number	2	20	20	

	wing	fuselage	fairing	flap	slat	nacelle	pylon
Minimum grid width	Δx_{ref}	$4\Delta x_{ref}$	$0.5\Delta x_{ref}$	Δx_{ref}	Δx_{ref}	$4\Delta x_{ref}$	$2\Delta x_{ref}$

13

Computational grid

200M-grid

Time history

2.6 0.45 2.4 0.40 $C_{D, total}^{-25.0}$ $C_{L, total}$ 0.30 2.0 0.25 1.8 0.20 10000 20000 40000 50000 10000 30000 20000 30000 40000 50000 0 time step time step 7.05[deg](100M) 7.05[deg](400M) - 7.05[deg](200M) 17.05[deg](100M) ---- 17.05[deg](200M) 17.05[deg](400M) ____ 19.57[deg](100M) - 19.57[deg](200M) 19.57[deg](400M) 21.47[deg](100M) - 21.47[deg](200M) 21.47[deg](400M)

Almost converged solutions

Aerodynamic coefficients

- · A fair agreement between UTCart and exp. at low AoA
- Smaller C_L , larger C_D , and larger C_M of UTCart than those of exp. at high AoA
- No grid convergence in C_D and C_M at high AoA

0.4

o^Q 0.3

0.2

10

 α [deg]

15

Skin friction at $C_{L,max}$ (19.57[deg])

- Larger outboard separation compared to exp.
 - Smaller C_L , larger C_D , and larger C_M
 - Also reported in RANS simulations in HLPW*1
- The position of the separation area depends on the grid width

oil-flow photograph*1

Conclusion

- Steady flow simulations around CRM-HL were conducted with UTCart (IB+SA wall model)
 - Case4 : 2D CRM-HL
 - A fair agreement between UTCart and FUN3D at finest grid
 - If IP is in the log layer, the prediction accuracy is reasonable
 - Case1: 3D CRM-HL
 - A fair agreement to exp. at low AoA
 - Larger outboard separation compared to exp. at high AoA
 - The calculation results were dependent on grid width
 - Grid convergence was not observed in C_D and C_M at high AoA

 \rightarrow IB+SA wall model can analyze high-lift device configurations with reasonable accuracy

