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ABSTRACT 
In this study, feasibility assessment of a Martian nonstop sample return system as a part of  JAXA’s future Mars Exploration with Landers 
and Orbiters (MELOS) mission has been conducted. In the mission scenario, the vehicle enters the Martian atmosphere, collects the 
Martian dust and atmospheric gases during the hypersonic atmospheric flight, exits the Martian atmosphere, and is inserted into a parking 
orbit from which a return system departs for the earth. To design aeroshells appropriate for this mission, a parametric study of aeroshells 
having large ballistic coefficient and moderate lift-to-drag ratio is made. Finally, a baseline design of the aeroshell in sphere-cone form is 
selected for the Martian aero-flyby sample return system. 
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Fig.1 Mars aero-flyby sample return sequence.  
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Fig.3 Accessible lowest altitude during aeroassist 
orbit transfer from the primary elliptic orbit with 300 
km x 7Rm altitude. 
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Fig.2 Flight path corridors for different target orbit 
under atmospheric density uncertainties from the 
primary elliptic orbit with 300 km x 7Rm altitude. 
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Fig.6 Lift-to-drag coefficient variation with several 
half apex angle of the cone at R = 0.3m 
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Fig.4 Lift-to-drag coefficients with several sphere 
radii at  = 20 degree. 
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Fig.7 Ballistic coefficient variation with several half 
apex angle of the cone at R = 0.3m 
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Fig.5 Ballistic coefficients with several sphere radii 
at  = 20 degree. 
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Fig.8 Lift-to-drag coefficient variation with several 
length of the ellipse at D = 1.5m 

Fig.10 Lift-to-drag coefficient variation with several 
ratio of the upper shot radius to lower one of the 
modified ellipse. 
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Fig.9 Ballistic coefficient variation with several 
length of the ellipse at D = 1.5m. 

Fig.11 Ballistic coefficients with several ratios of the 
upper shot radius to lower one of the modified 
ellipse. 
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Fig.12 Drag coefficients with several half apex 
angles; solid lines show experimental results, points  
do CFD ones, and dotted lines do the ones by 
modified Newton theory 
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Fig.14 Lift-to-drag coefficients with several half apex 
angles; solid lines show experimental results, points  
do CFD ones, and dotted lines do the ones by 
modified Newton theory 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-10 0 10 20 30

C
L/C

D

Angle of attack, degree

20degree

15degree

25degree

Fig.13 Lift coefficients with several half apex angles; solid 
lines show experimental results, points  do CFD ones, and 
dotted lines do the ones by modified Newton theory 
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Fig.15 Pitching moment coefficients with several half 
apex angles; solid lines show experimental results, 
points  do CFD ones, and dotted lines do the ones by 
modified Newton theory 
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Fig.16 Height of the center of gravity for several trim 
angles.
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